# Advanced FPC Real Time Controller User Guide

Version 1.1 September 25, 2020 Part No. 22940009

for use with:

Control Software version 1.00.00 on Advanced FPC Real Time Controller, PN 22991007



prepared by GPD Global® Documentation Department



611 Hollingsworth Street Grand Junction, CO, USA 81505 tel: +1.970.245-0408 • fax +1.970.245-9674 request@gpd-global.com • www.gpd-global.com

Copyright © 2020 GPD Global® • All Rights Reserved

# **Front matter**

# **Revision notes**

| Date     | Version | Notes                                                                                                                                                                                                                                                                              |  |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 03/06/20 | 1.0     | Initial document.                                                                                                                                                                                                                                                                  |  |
| 09/25/20 | 1.1     | <ul> <li>"Release notes" added.</li> <li>"Communications: Input/Output signals" updated: function clarified for pins 2 &amp; 10; pins 11 &amp; 12 added.</li> <li>Minor updates to format and terminology (press instead of touch; press and release instead of slide).</li> </ul> |  |

# Contents

| Front matter                                     | ii   |
|--------------------------------------------------|------|
| Revision notes                                   | ii   |
| Contents                                         | iii  |
| Legal                                            | V    |
| Safety notices                                   | vi   |
| Warranty                                         | viii |
| About this manual                                | 1    |
| System overview                                  | 1    |
| Theory of operation                              | 1    |
| Special features                                 | 3    |
| Specifications                                   | 3    |
| System requirements                              | 4    |
| Installation                                     | 5    |
| Inspect equipment                                | 5    |
| Package contents                                 | 5    |
| Accessories                                      | 5    |
| Installation procedures                          | 6    |
| Setup                                            | 8    |
| Startup                                          | 9    |
| Initial testing                                  | 9    |
| Power down procedure                             | 9    |
| User interface                                   | 10   |
| Description of controls                          | 10   |
| Description of windows                           | 10   |
| Menu structure                                   | 14   |
| Keypad for numeric input                         | 14   |
| Operating instructions                           | 16   |
| Power on/off                                     | 16   |
| Set online/offline state                         | 16   |
| Run controller                                   | 16   |
| Stop controller                                  | 17   |
| Change Equipment                                 | 17   |
| Select recipe                                    | 17   |
| Select dispense mode                             | 17   |
| Select units of measure                          | 18   |
| Set parameters and settings                      | 18   |
| Adjustments                                      | 21   |
| Reset fluid pressure to zero                     | 21   |
| Calibrate the fluid pressure sensor              | 21   |
| Programming instructions                         | 26   |
| Interfacing with controller                      | 26   |
| Basic interface operations                       | 27   |
| Run (Dispense)                                   | 29   |
| Differences between Dot mode and Continuous mode | 30   |

| Error Handling                      | 31 |
|-------------------------------------|----|
| Routine maintenance                 | 32 |
| Cleaning                            | 32 |
| Troubleshooting                     | 33 |
| Testing procedures                  | 34 |
| Removal & replacement of components | 35 |
| Fuses                               | 35 |
| Suggested spare parts               | 35 |
| Appendices                          | 36 |
| Units of measure defaults           | 36 |
| Windows and fields                  | 37 |
| External robot control              | 43 |
| Communications                      | 46 |

# Legal

#### Trademarks

- GPD Global<sup>®</sup> is a registered trademark of GPD Global<sup>®</sup>, Inc.
- Taper-Lock<sup>™</sup> is a trademark of GPD Global, Inc.

Throughout this manual, trademarks are used. Rather than put a trademark symbol in every occurrence of a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit of the trademark owner with no intention of infringement of the trademark.

#### Disclaimers

GPD Global<sup>®</sup> devices are intended for the stated functions at the time of sale. GPD Global<sup>®</sup> is not liable for other uses.

| <b>IMPORTANT:</b> Operation of a damaged device may cause personal injury and invalidate the warranty.                                      |                                                                                                                                                    |                                                                                                                                      |                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <b>IMPORTANT:</b><br>L'utilisation d'une<br>machine endommagée<br>peut entraîner des<br>blessures personnelles<br>et invalider la garantie. | WICHTIG<br>Die Bedienung einer<br>beschädigten Maschine<br>kann zu Verletzungen<br>des Bedieners sowie zur<br>Ungültigkeit der Garantie<br>führen. | IMPORTANTE<br>Il funzionamento di<br>un'apparecchiatura<br>danneggiata può<br>causare lesioni personali<br>e invalidare la garanzia. | <b>IMPORTANTE</b><br>La utilización de una<br>máquina averiada<br>puede provocar<br>lesiones e invalidar<br>la garantía. |

# Safety notices



### WARNING: Appropriate use

This equipment must be used in the manner indicated in these instructions. Use for any other purpose may cause damage to the equipment, injury, or death.



#### WARNING: ELECTRIC SHOCK

Equipment is electrical in nature and shock may occur if used improperly or opened while powered. Shock, injury, and death may occur. Unplug system before any maintenance or plugging or unplugging components.

Remove the electrical power cable from the AC outlet before the controller cover is opened. Only qualified personnel should remove the cover; there are no user-serviceable parts inside.



### WARNING: Final integration - moving parts

The moving parts that require guarding are part of the end users integration and should be provided with guarding and enclosures. Failure to provide guarding may result in injury or death. Turn off system before touching moving parts.



#### WARNING: Final integration - lock out tag procedure

Lock out tag procedure for the final integrated system:

Injury may occur if you fail to perform these steps. Turn System off. Unplug system from power source, wait 30 minute for parts to cool. verify system is off by trying to restart system from control panel. if system does not start then place tag on the device from the Lock Out Tag out Standards. To return to service reverse this procedure omitting the 30 minute wait period.



#### **CAUTION:** Warranty

Any of the following that are done without the explicit and written approval of the manufacturer:

- conversions or additions,
- the use of non-original spare parts,
- repairs carried out by companies or persons that have not been authorized by the manufacturer

can lead to the warranty being rendered null and void. The manufacturer shall have no liability whatsoever for damage resulting from failure to follow the operation and maintenance instructions.



#### **CAUTION:** Qualifications of operating and maintenance personnel

The owner bears the responsibility for ensuring that operating and maintenance personnel have the required qualifications. The operation and maintenance instructions must be read and understood. Comply with the relevant applicable technical and safety regulations.



#### **CAUTION:** Organizational measures

The owner is to provide any personal protective equipment that is required. All the safety devices are to be checked regularly. Wear protective glasses and a protective suit for operation and cleaning to protect against any chemicals that may be sprayed out.



#### **CAUTION:** System provides outputs for heaters

Heaters must be protected from causing over heat. Integration in the final system must include a thermal snap switch or other fail safe over heat device. Heated devices must be guarded and labeled, Fire, burns, scalds, and other thermal injuries are possible. Unplug the system before servicing, and allow at least 30 minutes to cool down to room temperature before touching any heaters or similar device.



#### **CAUTION:** Exhaust considerations

No releases are generated during normal operations. End users should determine whether or not exhaust is required. Failure to provide exhaust may result in exposure to chemicals, resulting in illness injury and potentially death. When using hazardous materials, always provide enclosure with exhaust embedded and certified for use.



#### **CAUTION:** Flammable and volatile compounds

End users may select adhesives and compounds which are flammable and contain volatile organic compounds. End users must provide appropriate exhaust prevention of fire and other hazards in the final integration. Failure to provide such protection may result in fire resulting in damage to equipment the building in nearby environment, burns injuries and possibly death. End users must provide protection for fire risk generated by the chemicals of the use.



#### **CAUTION:** Integration - power interrupt

When integrating this controller, always provide a top level equipment EMO which interrupts power to the controller when activated.



#### **CAUTION:** Integration - fire risk assessment

The end user upon integration of this equipment should perform a fire risk assessment based on the quantity and flammability of chemicals that they intend to use with this system.



#### ALERT: Integration - secondary containment of final integrated system

The final integrated system must be provided with secondary containment. The volume of the secondary containment is 110% of the largest container.

# Warranty

**General Warranty.** Subject to the remedy limitation and procedures set forth in the Section "Warranty Procedures and Remedy Limitations," GPD Global warrants that the system will conform to the written description and specifications furnished to Buyer in GPD Global's proposal and specified in the Buyer's purchase order, and that it will be free from defects in materials and workmanship for a period of one (1) year. GPD Global will repair, or, at its option, replace any part which proves defective in the sole judgment of GPD Global within one (1) year of date of shipment/invoice. Separate manufacturers' warranties may apply to components or subassemblies purchased from others and incorporated into the system. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY AND ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

**Limitations.** GPD Global reserves the right to refuse warranty replacement, where, in the sole opinion of GPD Global the defect is due to the use of incompatible materials or other damages from the result of improper use or neglect.

This warranty does not apply if the GPD Global product has been damaged by accident, abuse, or has been modified without the written permission of GPD Global.

Items considered replaceable or rendered unusable under normal wear and tear are not covered under the terms of this warranty. Such items include fuses, lights, filters, belts, etc.

Warranty Procedures and Remedy Limitations. The sole and exclusive remedy of the buyer in the event that the system or any components of the system do not conform to the express warranties stated in the Section "Warranties" shall be the replacement of the component or part. If on-site labor of GPD Global personnel is required to replace the nonwarranted defective component, GPD Global reserves the right to invoice the Buyer for component cost, personnel compensation, travel expenses and all subsistence costs. GPD Global's liability for a software error will be limited to the cost of correcting the software error and the replacement of any system components damaged as a result of the software error. In no event and under no circumstances shall GPD Global be liable for any incidental or consequential damages; its liability is limited to the cost of the defective part or parts, regardless of the legal theory of any such claim. As to any part claimed to be defective within one (1) year of date of shipment/invoice, Buyer will order a replacement part which will be invoiced in ordinary fashion. If the replaced part is returned to GPD Global by Buyer and found by GPD Global in its sole judgment to be defective, GPD Global will issue to Buyer a credit in the amount of the price of the replacement part. GPD Global's acceptance of any parts so shipped to it shall not be deemed an admission that such parts are defective.

Specifications, descriptions, and all information contained in this manual are subject to change and/or correction without notice.

Although reasonable care has been exercised in the preparation of this manual to make it complete and accurate, this manual does not purport to cover all conceivable problems or applications pertaining to this machine.

# About this manual

This document provides an overview of the Advanced FPC Real Time Controller plus setup and operating instructions, and details about communicating with the controller and programming it.

# System overview

Use operator, remote, or external methods to control reservoir fluid pressure for automatically produced, consistent dispense results. This is the key advantage of using the self-regulated Advanced FPC Controller.

This advanced table top controller automatically manages a timed fluid pressure cycle for a wide range of material viscosities by applying a specified amount of air pressure to a reservoir for a specified period of time. It also provides operating control over auxiliary functions such as reservoir heat and/or needle heat.

A fluid dispense reservoir controlled by the Advanced FPC Controller can process any application for which that reservoir is compatible (e.g., patterns, dots, lines), in a wide range of material viscosities: cream solder, silver paste, epoxies, bond, oil, etc.



# Theory of operation

# **General theory of operation**

The Advanced FPC Controller may be connected to a robot or other control signal to start/stop the FPC (fluid pressure control) function applied to a reservoir. Alternatively, the start/stop button on the Advanced FPC Controller may be selected.

When the Advanced FPC Controller is in the Run state, fluid pressure achieves the Run mode set point dictated by the current recipe.

When using Continuous/Line mode, releasing the Run button deactivates the dispense operation.

The Advanced FPC Controller is simple to set up and use:

- 1. Position the Advanced FPC Controller on a level surface.
- 2. Install the provided Time Pressure Interface on your reservoir.
- 3. Mount your reservoir in the provided mount.
- 4. Connect the fluid pressure sensor cable (part of the Time Pressure Interface) to the Advanced FPC Controller.
- 5. Power on the Advanced FPC Controller and set it to online state.
- 6. Adjust controller recipe parameters as needed.
- 7. Start/Stop the FPC function automatically or manually.

### **Online vs offline theory**

The Online/Offline button on the front of the controller toggles the controller between online and offline states.

Numerous process settings can be edited regardless of Online/Offline status.

#### Offline

Offline status is the non-operational/power up condition when air output is at approximately atmospheric pressure.

This is the safe/preferred state for any equipment change while the controller remains powered on.

#### Online

The controller must be Online for any activation method (operator/remote/external) to function.

Online status is either actively running a process (Run state) or waiting and immediately prepared to do so (Hold state/Standby state). While in any online state (Run/ Hold/Standby), the controller actively controls pressure (air output is pressurizing or "pulling" vacuum) per user defined set point(s).

Figure 1: Hold/Standby/Run states diagram and relationship to Online/Offline status



| ltem        | Description                                                        | Reference                               |
|-------------|--------------------------------------------------------------------|-----------------------------------------|
| 1 - Online  | Online is activated by operator<br>or external/remote controller.  | Set online/offline state (pg 16)        |
| 2 - Offline | Offline is activated by operator<br>or external/remote controller. | Stop controller (pg 17)                 |
|             |                                                                    | Troubleshooting (pg 33)                 |
|             | OR                                                                 |                                         |
|             | Error occurs.                                                      |                                         |
| 3 - Hold    | Controller is enabled/set online.<br>OR                            | Set online/offline state (pg 16)        |
|             | Standby state expires.                                             | Dot dispense window (pg 39)             |
|             |                                                                    | Continuous/Line dispense window (pg 40) |

| 4 - Run     | Run is activated by operator or external/remote controller.   | Run controller (pg 16)                                                 |
|-------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| 5 - Standby | Standby time-out expires.                                     | Dot dispense window (pg 39)<br>Continuous/Line dispense window (pg 40) |
| 6 - No Run  | Run is deactivated by operator or external/remote controller. | Run controller (pg 16)                                                 |

# **Special features**

- In addition to controlling all pneumatic aspects of a reservoir used for pattern dispense, dot dispense and/or continuous/line dispense, the Advanced FPC Controller also provides vacuum control to prevent the fluid reservoir from dripping.
- The pneumatic pressure control of a fluid reservoir for dispensing is either timed or externally activated.
- Control is activated via the front panel, a foot pedal, an external/remote controller.
- The controller stores 30 recipes which persist through a power cycle. Some remote programming and control functions are available.
- Temperature control of a heated needle and a heated reservoir are also available.

# **Specifications**

| Dimensions (W x D x H) Weight.             | 247.65 mm x 279.4 mm x 101.6 mm (9.75" x 11" x 4")<br>4.25 kg (9.38 lb)                                                                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Power supply voltage<br>Consumption rating | input: 120/240 V, 50/60 Hz, Single Phase<br>150 VA / 2.0 A                                                                                    |
| User interface                             | Touch Screen with Advanced FPC Real Time Controller software controller to reservoir (standard): 2 meter, high flex. Other lengths available. |
| External trigger signal                    | +5 to 24 V-Dry Contact                                                                                                                        |
| Air pressure:                              |                                                                                                                                               |
| Input                                      | 0-6.9 bar (0-100 psi)                                                                                                                         |
| Output                                     | 0-4.1 bar (0-60 psi)                                                                                                                          |
| Air tube diameter:                         |                                                                                                                                               |
| Input port                                 | 6 mm                                                                                                                                          |
| Output port                                | 6 mm                                                                                                                                          |
| Heater                                     | drives two 24VDC 23W heaters                                                                                                                  |
| External input                             | PLC, robotic controller, foot switch                                                                                                          |
| Operating temperatures                     | +10° C to +40° C (50° F to 104° F)                                                                                                            |

# System requirements

Hardware and software needed to control/run the Advanced FPC Controller:

#### Standard (included with controller):

Control Software (PN 2050-0098) - factory installed software; controls the controller.

#### Optional or provided by customer:

- Computer or controller for external data acquisition/streaming.
- Robot with 24V output for control by an external robot via digital signals.
- PLC or controller for control by external inputs/outputs.
- Heater(s) for heated reservoir material and/or needle.

# Installation

# **Inspect equipment**

Inspect the equipment and note any damage or defects.

**CAUTION**: The system should not be used if damaged or defective.

# **Package contents**

Your order includes these items:

| Item                                                  | Part Number                           | Notes |
|-------------------------------------------------------|---------------------------------------|-------|
| Advanced FPC Controller                               | 22991007                              |       |
| Time Pressure Interface with Fluid<br>Pressure Sensor | 22893030                              |       |
| Taper-Lock™ Mount                                     | 22893032                              |       |
| Power Cable                                           | 10/1400                               |       |
| Hose - Air In & Air Out                               | 10/4622                               |       |
| Reservoir Air Caps (3, 5, 10, and 30 cc)              | 10/3083, 10/1514,<br>10/1515, 10/1542 |       |
| Reservoir Air Cap Inserts                             | 2675-0180                             |       |
| User Guide                                            | 22940009                              |       |

# Accessories

Your order may include these optional items:

- Fluid Pressure Sensor Calibration Kit
- Foot Pedal
- Power Extension Cord\*
- Extension Cable\* for Fluid Pressure Sensor
- Reservoir Heater
- Needle Heater

\* Various lengths are available

For part numbers, quotes, and further details, contact GPD Global.

# Installation procedures

# **Physical installation**

The Advanced FPC Controller is designed for bench top use. It can be stacked vertically with other control boxes from GPD Global.

### **Controller touchscreen**

To change the viewing angle of the controller touch screen, adjust the bail that flips up/down (on bottom of the controller).

### Controller foot pedal

A foot pedal can be used in place of the controller Run button.

To install a foot pedal to work with the controller:

- 1. Locate the Foot Pedal connection on the controller rear panel (refer to <u>Connection loca-</u> tions (pg 7)).
- 2. Plug the foot pedal into the Foot Pedal connection.

### Reservoir mount and interface

To assemble your reservoir (syringe) with the Time Pressure Interface and Taper-Lock Mount:

1. Screw a reservoir (syringe) and Luer-lock needle/nozzle onto the Time Pressure Interface per GPD Global *Time Pressure Interface User Guide* (PN 22800101).

**CAUTION:** Do not grasp, twist, or rotate sensor spring relief or cable, or damage will occur.



2. Mount the Time Pressure Interface per *How to Use Taper-Lock Mount instructions* (PN 22200611).

### Interconnections

**NOTE:** Use <u>Connection locations</u> (pg 7) to identify the ports on the rear panel of the controller.

To connect the controller:

- 1. Connect air source to the Air In port. Refer to Specifications (pg 3).
- 2. Connect air hose to the Air Out port and to the reservoir cap.
- 3. Plug the fluid pressure sensor cable from the Time Pressure Interface (mounted to the reservoir) into the FPC port.
- 4. Plug the power cable into the AC power outlet and an appropriate power receptacle. Refer to <u>Specifications</u> (pg 3).

# **Connection locations**

Figure 2: Controller rear panel



| ltem | Name         | Description                                                                                                   |
|------|--------------|---------------------------------------------------------------------------------------------------------------|
| 1    | AC Power     | Turns on/off device power. Also acts as fuse holder and power cord connector.                                 |
| 2    | Ethernet     | Network connector for external data acquisition/streaming. Connect to external computer or controller. (RJ45) |
| 3    | I/O          | Connector for external inputs/outputs. Connect to external PLC or controller.                                 |
| 4    | RS232        | Serial communication connector. Connect to external computer or controller.<br>(D-sub 9)                      |
| 5    | Heater 1     | Controls external heater 1. (5 Pin)                                                                           |
| 6    | Heater 2     | Controls external heater 2. (5 Pin)                                                                           |
| 7    | Level Detect | Not currently available.                                                                                      |
| 8    | Air Out      | Air to reservoir toggles on/off.                                                                              |
| 9    | Air In       | Connector for external air source regulated to meet air input <u>Specifications</u> (pg 3).                   |
| 10   | Foot Pedal   | Foot pedal / reservoir on. (4 pin)                                                                            |
| 11   | FPC          | Connector for the fluid pressure sensor.                                                                      |
| 12   | AUX Sensor   | Reserved for servicing.                                                                                       |

Also refer to rear panel details in <u>Connector pin outs</u> (pg 46).

# Setup

# Configuration

To configure the controller:

1. As needed, connect an external PLC, controller, or robot to the I/O port.

An external robot can control the Advanced FPC Controller via digital signals. This enables the robot to have control over the controller and determine which recipe is selected. For details, refer to <u>External robot control</u> (pg 43).

2. As needed, connect optional devices. Refer to Customization (pg 8).

**CAUTION:** Do not connect all optional items available into the controller at the same time or damage will occur and void the warranty.

- 3. Set initial air pressure setting per Optimization (pg 8).
- 4. Set values for Standby state and Hold state per <u>Reservoir pressure and duration parame-</u> ters (pg 18).

For help identifying state icons, refer to <u>Panes - dispense parameter areas</u> (pg 11) and <u>Windows and fields</u> (pg 37).

### Customization

As needed, any/all of the following optional devices may be connected to the controller; however, do not connect all available options to the controller at the same time. Contact GPD Global for details about approved combinations.

| ltem                                  | Description                                                                                                      |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Ethernet                              | Connect an external computer or controller Ethernet cable to the Ethernet port.                                  |
| Heater(s)                             | Connect an external heater(s) to the Heater 1 and/or Heater 2 port(s).                                           |
| Extension Cable<br>for Fluid Pressure | 1 - Disconnect the <i>standard</i> Fluid Pressure Sensor cable from the controller FPC port.                     |
| Sensor                                | 2 - Connect the Fluid Pressure Sensor <i>Extension Cable</i> to the <i>standard</i> Fluid Pressure Sensor cable. |
|                                       | 3 - Connect the other end of the Fluid Pressure Sensor <i>Extension Cable</i> to the FPC port on the controller. |

# Optimization

**RECOMMENDATION**: Start with an initial air pressure setting of 5.51 bar (80 psi) and, as needed, adjust for optimal operations for your process.

# Startup

- 1. Turn on the power switch located on the rear panel.
- 2. Verify the fluid sensor is plugged into the controller.
- 3. Verify input air pressure supply meets <u>Specifications</u> (pg 3) and is connected to the controller.
- 4. Verify output air pressure is connected to fluid reservoir with fluid sensor.
- 5. Set the controller to online. Refer to <u>Set online/offline state</u> (pg 16) and <u>Common indica-</u> tors (pg 11).

# **Initial testing**

To prepare the controller for operations:

- 1. Select a recipe per <u>Select recipe</u> (pg 17).
- 2. Select a dispense mode per <u>Select dispense mode</u> (pg 17).
- 3. Verify all equipment is connected properly.
- 4. Function testing perform these tests to verify proper function:
  - a. Set a positive Run set point pressure per <u>Set parameters and settings</u> (pg 18) and then run the controller by pressing and holding the Run button on the front panel.

Air should be flowing out from the output air pressure line.

b. Set a negative Hold set point pressure per <u>Set parameters and settings</u> (pg 18) and then set the controller to Online per <u>Set online/offline state</u> (pg 16).

Output air pressure should exhibit vacuum/suction.

5. **Application testing** - perform application testing to determine specific fluid feed pressure ideal for the material to be dispensed.

| Fixed Element | Process                                                                                                                                | Reference                           |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Time          | To obtain a dispense in <i>n</i> seconds,<br>adjust pressure until desired dispense<br>results occur in the desired amount of<br>time. | Set parameters and settings (pg 18) |
| Pressure      | To obtain a dispense at <i>n</i> pressure,<br>adjust time until desired dispense<br>results occur at the desired pressure.             | -                                   |

# Power down procedure

To turn off the controller, turn off the power switch located on the rear panel.

# **User interface**

# **Description of controls**



| ltem | Name                  | Description                                                                                                                                                                                                                    |
|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Touch Screen          | User interface.                                                                                                                                                                                                                |
| 2    | Run button            | Operator pushes button (or foot pedal) to run the controller, and<br>releases button (or foot pedal) to stop the controller.<br>OR<br>Run function is activated and deactivated by external/remote control-<br>ler.            |
| 3    | Online/Offline button | <ul> <li>Toggles the controller between online and offline states.</li> <li>The controller must be in Online state before any activation method (Run button, foot pedal, external/remote controller) will function.</li> </ul> |
| 4    | 100                   | On/Off toggle switch used in some touch screen windows. Press and release the icon to change its state.                                                                                                                        |

# **Description of windows**

# Windows

Refer to Windows and fields (pg 37) for an example of each window and its field descriptions.

A unique icon in the center top of each window identifies the window displayed. An identifying icon is located on all windows *except* the Main window.



### Panes - dispense parameter areas

The general process flow of a dispense is reflected in the layout of all dispense type windows.

Figure 4: The Dot Dispense Parameters window is an example of a dispense type window.



| ltem | Description                                                              |
|------|--------------------------------------------------------------------------|
| 1    | Parameters for the <b>Run dispense</b> portion of a dot dispense recipe. |
| 2    | Parameters for the Standby state of a dot dispense recipe.               |
| 3    | Parameters for the Hold dispense portion of a dot dispense recipe.       |

# System-wide command

The back arrow returns the display to the previous window. A back arrow is located on all windows *except* the Main window.



# **Common indicators**

These status indicators are common to all windows:

| ltem    |      | Name                        | Description                                                                                                                                |
|---------|------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| -       | L ≋⊙ | Reservoir connection status | <ul><li> online (arrow)</li><li> offline (double lines)</li></ul>                                                                          |
|         |      |                             |                                                                                                                                            |
| -       |      | Current recipe              | Displayed value rep-<br>resents the current recipe<br>number.                                                                              |
| 0.0 0.0 |      | Value state                 | <ul> <li>The field background color indicates value state.</li> <li>White = within set range</li> <li>Amber = outside set range</li> </ul> |

# Main window

# Indicators in Main window

These status indicators are used on the Main window:

| ltem     | Name                 | Description                                                                                                                                                                                                                                                                                            |
|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Dispense mode        | <ul> <li>The nozzle image that matches the currently selected dispense mode (dot or line) displays at the base of the reservoir:</li> <li>Dot dispense mode = nozzle dispensing dots</li> <li>Continuous/line dispense mode = nozzle dispensing a line</li> </ul>                                      |
| <b>Ö</b> | Reservoir status     | <ul><li>(left to right)</li><li>Run command asserted, work-in-progress.</li><li>Controller is experiencing an error condition.</li></ul>                                                                                                                                                               |
|          | State status         | <ul> <li>(left to right)</li> <li>Run State - fluid pressure is controlled to user-specified run pressure.</li> <li>Standby State - fluid pressure is controlled to user-specified standby pressure.</li> <li>Hold State - fluid pressure is controlled to user-specified holding pressure.</li> </ul> |
|          | Level Detect Warning | This indicator displays if the level detect feature<br>is enabled and a low level condition occurs in the<br>reservoir.                                                                                                                                                                                |



# Navigating with Main window

| Iter | m        | Name                | Description                                                                                                                                                                                                                                                                                                                                                                                   |
|------|----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |          | Menu                | Opens <u>Menu</u> (pg 38) window.                                                                                                                                                                                                                                                                                                                                                             |
| 2    | 20.0     | Reservoir settings  | <ul> <li>Pressing icon/value opens <u>Reservoir settings</u><br/>(pg 41).</li> <li>Temperature value displays only when reservoir<br/>temperature is enabled.</li> <li>Level Detect Warning displays only when level<br/>detection is enabled and fluid level is low.</li> </ul>                                                                                                              |
|      |          |                     | See more about value states at <u>Common indicators</u> (pg 11)                                                                                                                                                                                                                                                                                                                               |
| 3    |          | Dispense parameters | <ul> <li>Pressing any of these icons or values opens a parameters window based on the selected dispense mode:</li> <li>If Dot dispense mode is currently selected, pressing any of these areas opens <u>Dot dispense window</u> (pg 39).</li> <li>If Continuous/Line mode is currently selected, pressing any of these areas opens <u>Continuous/Line dispense window</u> (pg 40).</li> </ul> |
| 4    | 2000 T   | Needle settings     | <ul> <li>Pressing either of these icons or value opens <u>Nee-dle settings</u> (pg 42).</li> <li>Displays when needle temperature is enabled.</li> </ul>                                                                                                                                                                                                                                      |
|      |          |                     | Value state details here: <u>Common indicators</u><br>(pg 11)                                                                                                                                                                                                                                                                                                                                 |
| 5    | T.<br>T. | Dispense mode       | Pressing either of these icons toggles between the dispense modes. An image matching the currently selected dispense mode displays at the base of the reservoir.                                                                                                                                                                                                                              |

# Menu structure

The menu icon , located on the Main window, opens the Menu (pg 38) window.



Use the Menu window to navigate to these destinations:

| lcon        | Description                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Dot dispense window (pg 39)                                                                                                                                                                                         |
| Ţ           | Continuous/Line dispense window (pg 40)                                                                                                                                                                             |
| Ļ           | Reservoir settings (pg 41)                                                                                                                                                                                          |
|             | Needle settings (pg 42)                                                                                                                                                                                             |
| <b>þ</b> þþ | WARNING: STOP! DO NOT USE - sensitive tuning settings for qualified<br>GPD Global personnel only. Use of this feature by customer will void warranty.<br>Improper settings can lead to poor controller performance. |
| $\oplus$    | Calibrate the fluid pressure sensor (pg 21)                                                                                                                                                                         |

# Keypad for numeric input

Use the numeric keypad to change parameter values, setting values, and select a different recipe.



# Display keypad

To display the keypad, press any icon associated with a value or any value associated with an icon.

#### Save

To save an entered value and close the keypad, press "ENTER" in the bottom righthand corner of the keypad.

#### Cancel

To cancel an entered value and close the keypad, press "X" in the upper right-hand corner of the keypad.

### **Decimal places**

Parameter and setting values display decimal places when appropriate. If you try to enter decimal places where they are not used/displayed, the decimal portion of your entry will be ignored.

# **Operating instructions**

**NOTE:** If you use a glove or stylus to enter values on the touch screen, a capacitive type glove/stylus is required.

# Power on/off

# **Advanced FPC Controller power**

#### Power on

Turn on the power switch located on the rear panel.

#### Power off

To turn off the controller, turn off the power switch located on the rear panel.

# Set online/offline state

Toggle the controller to an online or offline state using the Online/Offline button on the front panel of the controller.

The corresponding reservoir connection status, D online or III offline, displays in the upper right corner of the screen.

The controller starts up in the offline state. It must be set online in order to run the controller (control fluid pressure).

# **Run controller**

Run the controller, i.e., control reservoir fluid pressure, via any of these methods:

- Run button on controller front panel
- Foot pedal connected to controller
- Signal via an external controller connected to controller
- RS232 use force run command (frun). Refer to <u>ASCII command set</u> (pg 52).
- Modbus TCP/IP set force run register (ForceRun). Refer to Process image (pg 62).

To run controller:

- 1. Perform <u>Startup</u> (pg 9).
- 2. Perform Initial testing (pg 9).
- 3. Run the controller/controlled fluid pressure:
  - a. Verify the correct holding pressure value is set for the current recipe.

Holding set point fluid pressure will be achieved when the controller is set to Online.

- b. To start Run:
  - Press and hold the Run button, or
  - Depress and hold the foot pedal, or
  - External controller sends a signal.

Run set point fluid pressure is achieved.

- 4. To stop asserting fluid pressure:
  - Release the Run button, or
  - Release the foot pedal, or
  - External controller sends a signal.

Holding set point fluid pressure is achieved.

# Stop controller

To stop fluid pressure control, set the controller to Offline using the Online/Offline button.

The **III** indicator displays when the controller is set to Offline.

# **Change Equipment**

Prior to making any equipment changes (replacing reservoir/needle/syringe, etc.), power off the controller or set it to Offline state.



**CAUTION**: All hardware setup must be complete prior to setting the controller Online (i.e., air output in line with the fluid pressure sensor).

# **Select recipe**

Recipes can be assigned using a value from 1-30. Current recipe details are retained through a power cycle.

To change to a different recipe:

- 1. Touch the eigen icon. A keypad displays.
- 2. Enter a different recipe number.

# Select dispense mode

The currently selected dispense mode is indicated by an image at the base of the reservoir on the Main window.

#### Toggle to a different dispense mode:

Touch the desired dispense mode icon (Item A). The image at the base of the reservoir (Item B) changes to indicate the newly selected dispense mode.



# Select units of measure

If you prefer to use a a unit of measure other than the default, touch the pressure or temperature symbol to select a different unit of measure option. For details, refer to <u>Units of measure defaults</u> (pg 36).

# Set parameters and settings

| How to:                         | Reference                                          |
|---------------------------------|----------------------------------------------------|
| Edit parameters                 |                                                    |
| Edit run pressure set point     | Dot dispense parameters (pg 18)                    |
| Edit standby pressure set point | Continuous/line dispense parameters (pg 18)        |
| Edit hold pressure set point    |                                                    |
| Zero pressure in reservoir      | Reservoir pressure and duration parameters (pg 18) |
| Turn heater on/off              |                                                    |
| Edit temperature set point      | Needle temperature settings (pg 19)                |
| Edit temperature limits         |                                                    |

### **Reservoir pressure and duration parameters**

**NOTE**: The value for the reservoir pressure set point and state duration can be set regardless of controller Online/Offline status.

### Dot dispense parameters

- 1. In the Main window, touch the **=** icon. Refer to <u>Menu</u> (pg 38).
- 2. Touch the **I** icon. Refer to <u>Dot dispense window</u> (pg 39).
- 3. Set values for the Run, Standby, and Hold states:
  - a. In the state/panel area to be updated, touch the 🕐 or 🐑 icon. A keypad displays.
  - b. Enter a new value.
  - c. Touch ENTER to save change or X to cancel change.
- 4. As needed, repeat prior step for additional parameters and/or states.

### Continuous/line dispense parameters

- 1. In the Main window, touch the **i** icon. Refer to <u>Menu</u> (pg 38).
- 2. Touch the **I** icon. Refer to <u>Continuous/Line dispense window</u> (pg 40).
  - a. In the state/panel area to be updated, touch the 💟 or 🐑 icon. A keypad displays.
  - b. Enter a new value.
  - c. Touch ENTER to save change or X to cancel change.
- 3. As needed, repeat prior step for additional parameters and/or states.

### **Temperature settings**

**NOTE**: Settings can be changed regardless of controller Online/Offline status.

#### **Reservoir temperature settings**

To edit the reservoir temperature settings:

- 1. In the Main window, touch the **main** icon. Refer to <u>Menu</u> (pg 38).
- 2. Touch the **1** icon. The reservoir settings window displays. Refer to <u>Reservoir settings</u> (pg 41).
- 3. **Reservoir heater power** To change the on/off state of the reservoir heater, touch the heater On/Off control to toggle between on and off.
- 4. Temperature set point To change the value:
  - a. Touch the *left arrow* in the **b** icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.
- 5. Temperature upper limit To change the value:
  - a. Touch the *top right arrow* in the **1** icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.
- 6. Temperature lower limit To change the value:
  - a. Touch the *bottom right arrow* in the **1** icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.

#### Needle temperature settings

To edit the needle temperature settings:

- 1. In the Main window, touch the **main** icon. Refer to <u>Menu</u> (pg 38).
- 2. Touch the **w** icon. The needle settings window displays. Refer to <u>Needle settings</u> (pg 42).
- 3. **Needle heater power** To change the on/off state of the reservoir heater, touch the heater On/Off control to toggle between on and off.
- 4. **Temperature set point** To change the value:
  - a. Touch the *left arrow* in the 🚺 icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.
- 5. **Temperature upper limit** To change the value:
  - a. Touch the *top right arrow* in the 🚺 icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.

- 6. **Temperature lower limit** To change the value:
  - a. Touch the *bottom right arrow* in the **I** icon. A keypad displays.
  - b. Enter new value.
  - c. Touch ENTER to save change or X to cancel change.

# Adjustments

**NOTE:** If you use a glove or stylus to enter values on the touch screen, a capacitive type glove/stylus is required.

# Reset fluid pressure to zero

To reset fluid pressure to zero (0):

- 1. In the Main window, touch the **main** icon. Refer to <u>Menu</u> (pg 38).
- 2. Touch the **L** icon. The reservoir settings window displays. Refer to <u>Reservoir settings</u> (pg 41).

Touch the **use** icon. The currently measured fluid pressure will be adjusted to zero and the displayed pressure value will change to 0.0.

# Calibrate the fluid pressure sensor

The calibration process is performed by calibrating against 2 points:

- · Calibration point atmospheric pressure the 0 pressure point
- Calibration point at maximum pressure the maximum input supply pressure to the system per <u>Specifications</u> (pg 3)

### Equipment/Tools required:

 Fluid Pressure Sensor Calibration Kit, PN 22893033 OR

- High precision pressure gauge with kPa output display
- Syringe (empty)
- Tubing
- Air fittings
- Valve or cap (to seal end of Time Pressure Interface)

### Prerequisite:

System should be "dry" (free of fluids/material) to perform the calibration procedure, so replace reservoir/syringe with an clean, dry, empty one.

To calibrate the fluid pressure sensor (located on the Time Pressure Interface):

1. Prepare the system for calibration by temporarily sealing the system at the point where dispense fluid is output so the pneumatic system can easily be both (1) exhausted to atmospheric pressure, and (2) is capable of being completely sealed.

**CAUTION**: Seal the output pressure system. If the pressure system is not properly sealed, loose system fittings can be propelled from the system at high speed when the air output pressure fully pressurizes during the calibration process.



Wear approved safety eye protection when operating or working near the system.

a. Seal the **output** pressure system by replacing the needle with a manual valve (Figure 5).

b. Attach a pressure gauge on the output pressure source (Figure 5).

Figure 5: Pneumatic system temporarily sealed for sensor calibration procedure.



- 2. In the Main window, touch the **main** icon. Refer to <u>Menu</u> (pg 38).
- 3. Touch the 🕀 icon. A prompt displays.



- 4. Choose one:
  - Touch NO to cancel/abort calibration.

**NOTE**: The sensor calibration process can be safely aborted at any time by shutting off power to the controller.

- Touch YES to start sensor calibration, and continue with the following step.

- 5. Choose one:
  - Touch START to start the calibration process.
  - \_ Touch EXIT to abort the calibration process and restart the controller.

| Pressure                         | e Sensor Ca                                | libration                                     |
|----------------------------------|--------------------------------------------|-----------------------------------------------|
| Place a referen<br>WARNING - sys | ce pressure gauge o<br>tem will achieve ma | n the output pressure<br>ximum input pressure |
|                                  | START                                      |                                               |
|                                  | EXIT                                       |                                               |
|                                  |                                            |                                               |

- 6. To purge air pressure:
  - a. To expose the sensor to atmospheric pressure, gently grip only the hex fitting portion with a wrench and then gently remove the fluid pressure sensor from the Time Pressure Interface.



CAUTION: Do not grasp, twist, or rotate sensor spring relief or cable, or damage will occur.

- b. Manually open the valve or unscrew cap (refer to Figure 5)
- c. Wait for air pressure to be purged.



- 7. When the keyboard displays:
  - a. Note the value displayed on the calibration pressure gauge.
  - b. Close the manual valve.
  - c. Using units kPa, input the value from the calibration pressure gauge.
  - d. Touch ENTER.

The system will pressurize.

|   | Ρ  | ress    | ure S   | Sens     | or Ca   | alibra | ation   |     |   |
|---|----|---------|---------|----------|---------|--------|---------|-----|---|
|   | In | put the | reading | of the p | ressure | gaugei | n units | kPa |   |
|   |    |         |         |          |         |        |         |     | X |
| 0 | 1  | 2       | 3       | 4        | 5       | 6      | 7       | 8   | 9 |
|   | 2  | D       | EL      | CLI      | EAR     |        | EN      | TER |   |

8. Wait for the system to pressurize.

The system must be completely sealed; leaks will prevent the system from pressurizing completely.



- 9. When pressure is stable:
  - a. Note the pressure gauge reading
  - b. Enter the pressure gauge reading on the controller in units kPa.
  - c. Touch ENTER.

|   | Ρ  | ress    | ure S   | Sens     | or Ca   | alibra | ation     |     |   |
|---|----|---------|---------|----------|---------|--------|-----------|-----|---|
|   | In | put the | reading | of the p | ressure | gaugei | n units l | kPa |   |
|   |    |         |         |          |         |        |           |     | X |
| 0 | 1  | 2       | 3       | 4        | 5       | 6      | 7         | 8   | 9 |
|   | 2  | D       | EL      | CLI      | EAR     |        | ENT       | TER |   |

- 10. To verify calibration:
  - a. Compare the value displayed by the pressure gauge to the values displayed for **Resvr** and **Fluid**. Values should be within ±0.5 PSI of each other.
  - b. As needed, adjust air flow and pressure by entering a value in **Duty Cycle(%)**.

**Table 1:** Control the flow rate of pressurization with Duty Cycle(%)

| Duty Cycle(%) | Notes                                           |
|---------------|-------------------------------------------------|
| 0%            | Valve is closed. System exhausts to atmosphere. |
| 0.1%          | minimum flow                                    |
| 100%          | maximum flow                                    |

- c. Choose one:
  - Exit the calibration process by pressing X.
  - Abort the calibration process by powering off the controller.
  - Accept calibration results by pressing ENTER and continuing with the following step.



#### 11. Choose one:

- To exit without saving calibration results, touch NO.
- To save calibration results, touch YES.

| Duty Cycle(%):0.0 Resvr:301.5<br>Fluid:300.1<br>Save Calibration? | Duty Cycle(%):0.0 Resvr:301.5<br>Fluid:300.1<br>Save Calibration? | Pressure Se       | nsor Calibration           |
|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|----------------------------|
| Save Calibration?                                                 | Save Calibration?<br>Yes No                                       | Duty Cycle(%):0.0 | Resvr:301.5<br>Fluid:300.1 |
| Yes No                                                            | Yes No                                                            | Save 0            | Calibration?               |
|                                                                   |                                                                   | Yes               | No                         |

The controller reboots and returns to the Main window.

**NOTE:** If the sensor does not operate as expected, perform the <u>Testing procedures</u> (pg 34). If testing does not resolve the problem, the sensor may need to be replaced. Contact GPD Global to verify whether or not the problem requires sensor replacement.



**IMPORTANT**: If the sensor needs to be replaced, calibrate the new sensor prior to returning the controller to operation.

# **Programming instructions**

**NOTE:** "Pump" is used herein as a generic term to represent *a head that moves fluid*; e.g., reservoir, syringe, needle, nozzle, or valve.

# Interfacing with controller

### Program via RS232 interface

To use the RS232 interface to program the controller:

- 1. Power off the controller.
- 2. Plug an RS232 connector into the controller.
- 3. For programming, use the ASCII Commands and ASCII Command Set reference material provided in the <u>RS232 programming</u> (pg 50)

# **Program via Ethernet**

To use the Ethernet interface to program the controller:

- 1. Power off the controller.
- 2. Plug an Ethernet connector into the controller.
- 3. For programming, use the Process Image Data and Process Image Type reference material provided in the <u>Modbus TCP/IP programming</u> (pg 56).

# **Basic interface operations**

Examples of usage for the programmer/integrator interfacing with the controller.

### Set offline - disable controller operations

Setting the controller Offline will disable the controller such that no valves are in operation. This can be done in the following:

Process Image

OnlineState=0

**ASCII** Command

onst=0

# Set online - enable controller operations

Setting the controller Online enables the controller and immediately begins controlling pressure at the holding pressure set point; therefore, the holding pressure set point should be set before setting the controller Online.

### Recommended steps (initialization)

Set dispense mode

There are two dispense modes: continuous and dot. Each mode has a holding pressure set point; therefore, it is recommended you set this prior to use.

Set holding pressure set point

This depends on the dispense mode selected.

Set online

### Set continuous dispense mode

Process Image

DispenseMode=1

**ASCII** Command

dmod=1

### Set holding pressure set point

For example, set holding pressure set point to 0.0 kPa for continuous dispense mode.

Process Image

ContHoldSetpoint=0.0

ASCII Command

cths=0.0

# Set online

If set online, the holding pressure set point will be achieved.

Process Image

OnlineState=1

ASCII Command

onst=1
# **Run (Dispense)**

When a run command is asserted (i.e., digital input signal) the controller will achieve the Run set point pressure. This requires the controller to be Online (see <u>Set online</u> (pg 28). The Run set point pressure should be set prior to running. Like the holding pressure set point (see <u>Set holding pressure set point</u> (pg 28), the Run set point has a separate value when in dot mode and when in continuous mode.

### **Continuous mode**

If Continuous mode, set Run set point (ex. 50 kPa)

Process Image

ContRunSetpoint=50.0

ASCII Command

ctrs=50.0

### Dot mode

If Dot mode, set Run set point (i.e. 50 kPa)

Process Image

DotRunSetpoint=50.0

#### ASCII Command

dtrs=50.0

# Differences between Dot mode and Continuous mode

Dot and Continuous dispense modes differ during the Run state.

- Continuous achieves Run set point pressure until the run command is no longer asserted.
- Dot achieves Run set point pressure for a predetermined period of time.

**NOTE:** The run activation signal must be deactivated before another run cycle can occur.

### Setting Dot mode time (ex. 250ms)

Process Image

```
DotRunDuration=250
```

ASCII Command

dtrs=250

#### **Determine when Dot completed**

Monitor the pump busy signal or register to determine when a Dot activation has completed.

```
0 = not busy (completed)
1 = busy
```

Process Image

PumpBusy

#### **ASCII** Command

pbsy

# **Error Handling**

•

There are multiple ways to detect and determine if an error has unexpectedly occurred while the controller is in operation.

### **Detect faults**

- Check for fault condition
- monitor PumpFault digital output
- read PumpFault register

Process Image Read

PumpFault

ASCII Command

pflt v 1

#### **Determine error source**

When a fault condition occurs, the following can be done to determine what the error is:

- Check the error code
- Read Error register
- Check the error message
  - Read ErrorMsg register(s)

Error code

Process Image Read

Error

**ASCII** Command

errn

#### Error Message

#### Process Image Read

ErrorMsg

#### ASCII Command

errm

# **Routine maintenance**

# Cleaning

Periodically wipe the external surfaces of the controller with a clean, dry, soft cloth.

# Troubleshooting

#### Symptom



This reservoir status indicator displays on the Main window.

**Problem**: An error condition has occurred for the reservoir. The fluid sensor may not be functioning correctly or is disconnected.

Action: To clear an error condition, set the controller to Online using the Online/Offline button. To detect and determine error source, refer to Error Handling (pg 31).

#### Symptom



This low level warning indicator displays on the Main window.

Problem: A low fluid level condition has occurred in the reservoir.

Action: Either refill the reservoir or replace it with a full reservoir.

#### Symptom

The controller will not enter Run mode.

**Problem**: The temperature of the fluid or needle may be outside specified temperature range.

Action: Inspect the Main window for temperature warning indicators. Refer to <u>Common indicators</u> (pg 11).

#### Symptom



This temperature warning indicator (amber background) displays on the Main window. Value may vary.

**Problem**: Temperature is outside of specified temperature range or heater is malfunctioning.

#### Action:

- If temperature is below set point, wait until set point has been achieved. The controller will not function when temperature is outside set point range. If two heaters are in use, the temperature for both heaters must be within set point range before controller will function.

- If temperature significantly exceeds set point, turn off the controller and call support.

- Inspect heaters and replace as needed.

#### Symptom

**Problem:** The pressure value reported by the fluid pressure sensor (located on the Time Pressure Interface) is noticeably different than expected. For example, when the fluid pressure sensor is exposed to atmosphere pressure, the reading is not close to zero (0).

#### Action:

Determine whether or not the sensor responds to the controller by comparing readings per <u>Compare pressure readings</u> (pg 34). If the problem is not resolved, perform the <u>Test controller function</u> (pg 34) procedure.

# **Testing procedures**

#### **Compare pressure readings**

To compare the pressure reading reported by the fluid pressure sensor to that of another pressure gauge:

- 1. Set up the hardware in the same dry pneumatic configuration as described in <u>Calibrate the</u> <u>fluid pressure sensor</u> (pg 21).
- 2. Compare the fluid pressure readings to the external pressure gauge.
- 3. Also compare the fluid pressure readings to the reservoir pressure (Figure 6, Item A) reading displayed on the main screen.

Figure 6: Reservoir pressure reading (A) and fluid pressure reading (B) on Main window.



**NOTE:** Because this test is performed with a dry pneumatic system, the two pressure readings (Figure 6, Items A and B) on the main screen should be the same value consistently.

*NOTE:* If pressure readings differ significantly, perform the <u>Calibrate the fluid pressure</u> sensor (pg 21) procedure.

#### **Test controller function**

To test the fluid pressure sensor for proper function:

- 1. Disconnect the air cap from the reservoir (syringe).
- 2. Gripping only the hex fitting portion with a wrench, gently remove the fluid pressure sensor from the Time Pressure Interface.



**CAUTION**: Do not grasp, twist, or rotate sensor spring relief or cable, or damage will occur.

- 3. Set air pressure to a low setting (5 psi). Air should flow from the air cap.
- 4. **Gently** cover the fluid pressure sensor with a finger tip and **slowly** increase finger tip pressure.



**CAUTION**: DO NOT exert more pressure on the sensor after air flow has ceased as this will damage the sensor. Pressing harder on the sensor will not produce better results.

Air flow from the air cap should cease when the process value is equal to the set point.

**NOTE:** If air flow continues without interruption, the sensor may need to be calibrated per <u>Calibrate the fluid pressure sensor</u> (pg 21).

# **Removal & replacement of components**

# **Fuses**

To replace a fuse:

1. Using the tip of a small screwdriver, pry the fuse holder from the center of the AC power connector located on the rear panel.



- 2. Remove and replace one or both fuses.
- 3. Slide fuse holder into AC power connector.

# Suggested spare parts

| Description                           | Part No.  | Qty |
|---------------------------------------|-----------|-----|
| Coupling Insert for Reservoir Air Cap | 2675-0180 | 4   |
| Reservoir Air Cap, 3 cc               | 10/3083   | 2   |
| Reservoir Air Cap, 5 cc               | 10/1514   | 2   |
| Reservoir Air Cap, 10 cc              | 10/1515   | 2   |
| Reservoir Air Cap, 30 cc              | 10/1542   | 2   |
| Temperature Fuse, 2A                  | 4300-0118 | 2   |

# Appendices

# Units of measure defaults

The currently selected units of measure display on the screen next to its corresponding value.

Values with multiple units (e.g., kPa | PSI) can be selected by the user.

Figure 7: Available units of measure

| Time        | Milliseconds                   |
|-------------|--------------------------------|
| Pressure    | kPa (default)   PSI            |
| Temperature | Celsius (default)   Fahrenheit |

To change units of measure:

1. Locate a value with units of measure next to it that you want to change.



2. Touch the units of measure to cycle through the available measurement units.



# Windows and fields

### Main

Use the Main window to:

- access the menu window
- select a dispense mode or a recipe
- · access dispense mode settings for the currently selected dispense mode
- monitor reservoir and fluid pressure
- monitor reservoir and needle temperature (if heaters enabled)
- monitor for current dispense mode, reservoir connection status,, and active status.

For additional details about the Main window, refer to <u>Indicators in Main window</u> (pg 12) and <u>Navigating with Main window</u> (pg 13).



| ltem     | Name                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NA.      | Reservoir temperature | <ul> <li>Current temperature of reservoir (if enabled)</li> <li>Touching this value navigates to <u>Reservoir settings</u><br/>(pg 41).</li> </ul>                                                                                                                                                                                                                                                                                                                          |
|          | Needle temperature    | <ul> <li>Current temperature of needle (if enabled)</li> <li>Touching this value navigates to <u>Needle settings</u> (pg 42).</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
| 0.5711.4 | Reservoir pressure    | <ul> <li>Current reservoir air pressure</li> <li>Touching this value navigates to <u>Dot dispense window</u> (pg 39) or <u>Continuous/Line dispense window</u> (pg 40).</li> </ul>                                                                                                                                                                                                                                                                                          |
|          | Fluid pressure        | <ul> <li>Current fluid pressure near the needle tip</li> <li>Touching this value navigates to <u>Dot dispense window</u><br/>(pg 39) or <u>Continuous/Line dispense window</u> (pg 40).</li> </ul>                                                                                                                                                                                                                                                                          |
|          | Dispense mode         | <ul> <li>Selects either dot dispense mode or continuous/line dispense mode.</li> <li>Touch a dispense mode icon to select that mode.</li> <li>The mode icon will display at the base of the reservoir, and when a recipe is selected, it will dispense in the selected dispense mode.</li> <li>The currently selected dispense mode is indicated at the base of the reservoir. For example, the reservoir shown at left indicates continuous/line dispense mode.</li> </ul> |

### Menu

Use the Menu window to navigate to parameters and settings windows.



|                     | Settings window.                                                                                                                                                                                                            |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| }}}                 | Menu choices.                                                                                                                                                                                                               |
|                     | Opens <u>Dot dispense window</u> (pg 39).                                                                                                                                                                                   |
| ┍╴┚                 | Opens <u>Continuous/Line dispense window</u> (pg 40).                                                                                                                                                                       |
|                     | Opens <u>Reservoir settings</u> (pg 41) window.                                                                                                                                                                             |
| ┱                   | Opens <u>Needle settings</u> (pg 42)window.                                                                                                                                                                                 |
| <b>3</b> ,          | Hardware parameters categories.                                                                                                                                                                                             |
| <b></b><br><u> </u> | WARNING: STOP! DO NOT USE - sen-<br>sitive tuning settings for qualified GPD<br>Global personnel only. Use of this feature<br>by customer will void warranty. Improper settings<br>can lead to poor controller performance. |
| $\oplus$            | Opens the <u>Calibrate the fluid pressure sensor</u><br>(pg 21) prompt.                                                                                                                                                     |

## **Parameters**

### Dot dispense window

Use this window to edit dot mode parameter values.

The Advanced FPC Controller can be in one of three states at any given time when online: Run, Standby, or Hold. The active state is displayed on the <u>Main</u> (pg 37) screen.

Each state has a pressure set point that becomes the controlled pressure when that state is active.



| Ţ.         | Dot dispense parameters window. |                                                                                                                                                                                     |  |
|------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| }+         | Run state                       | Occurs when a run command/signal is sent to the controller.<br>Remains active for the amount of time (milliseconds) displayed in Run<br>time parameter.                             |  |
|            | Pressure set point              | Active when the Run state is active.                                                                                                                                                |  |
| $\bigcirc$ | Run time                        | The amount of time (milliseconds) the controller remains in Run state when the Run state is active.                                                                                 |  |
| }li        | Standby state                   | <ul> <li>Occurs after deactivation of a run command/signal.</li> <li>Remains active for the period of time (milliseconds) displayed in the "Standby time-out" parameter.</li> </ul> |  |
|            | Pressure set point              | Active when the Standby state is active.                                                                                                                                            |  |
| Э          | Standby time-out                | The amount of time (milliseconds) the controller remains in Standby state when the Standby state is active.                                                                         |  |
| Ť          | Hold state                      | <ul><li>Initial and idle states</li><li>Occurs when the Standby state expires.</li></ul>                                                                                            |  |
|            | Pressure set point              | Active when the Hold state is active.                                                                                                                                               |  |

### Continuous/Line dispense window

Use this window to edit line dispense (i.e., continuous dispense) parameter values.

The Advanced FPC Controller can be in one of three states at any given time when online: Run, Standby, or Hold. The active state is displayed on the <u>Main</u> (pg 37) screen.

Each state has a pressure set point that becomes the controlled pressure when that state is active.



|   | Continuous/Line dispense parameters window. |                                                                                                                                                                                   |  |
|---|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ¥ | Run state                                   | Occurs when a run command/signal is sent to the controller.                                                                                                                       |  |
|   | Pressure set point                          | Active when the Run state is active.                                                                                                                                              |  |
| } | Standby state                               | <ul> <li>Occurs after deactivation of a run command/signal.</li> <li>Remains active for the period of time (milliseconds) displayed in the Standby time-out parameter.</li> </ul> |  |
|   | Pressure set point                          | Active when the Standby state is active.                                                                                                                                          |  |
| 0 | Standby time-out                            | The amount of time (milliseconds) the controller remains in Standby state when the Standby state is active.                                                                       |  |
| Ť | Hold state                                  | <ul><li>Initial and idle states</li><li>Occurs when the Standby state expires.</li></ul>                                                                                          |  |
|   | Pressure set point                          | Active when the Hold state is active.                                                                                                                                             |  |

# **Settings**

# **Reservoir settings**

Use this window to edit reservoir settings.



| Ţ       | Reservoir settings window. |                                                                                                                                                                                                                                         |  |
|---------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Temperature                | Current temperature settings for temperature control.                                                                                                                                                                                   |  |
| 1       | Heater control             | Toggles heater on/off.<br>Heater is turned on.                                                                                                                                                                                          |  |
| 0       | Poson/oir tom              | Feater is turned off.                                                                                                                                                                                                                   |  |
| Ŧ       | perature settings          | <ul> <li>Set point value = arrow on left</li> <li>Upper limit value = arrow at top right</li> <li>Lower limit value = arrow at bottom right</li> <li>Temperature values and icon appear gray when this option is turned off.</li> </ul> |  |
| Ś       | Hardware settings          | Controls for optional hardware.                                                                                                                                                                                                         |  |
| 0 📎     | Zeroing pressure           | When this icon is touched, the currently measured pressure is adjusted to zero.                                                                                                                                                         |  |
| 0.0 PSI | Current pressure           | Displays the currently measured pressure.                                                                                                                                                                                               |  |
| >       | Level detect               | Not currently functional. Toggles the reservoir level detect on/off.                                                                                                                                                                    |  |
| -       | Reservoir mixer            | Not currently functional. Toggles the reservoir mixer on/off.                                                                                                                                                                           |  |

# Needle settings

Use this window to edit needle settings.



| Ţ   | Needle settings wind             | dow.                                                                                                                                                                                                                                                                                                   |
|-----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Temperature                      | Current temperature settings for temperature control.                                                                                                                                                                                                                                                  |
| 100 | Heater control                   | Toggles heater on/off.<br>Heater is turned on.<br>Heater is turned off.                                                                                                                                                                                                                                |
| ÷   | Needle tempera-<br>ture settings | <ul> <li>Enter values for temperature (Celsius) settings here:</li> <li>Set point value = arrow on left</li> <li>Upper limit value = arrow at top right</li> <li>Lower limit value = arrow at bottom right</li> <li>Temperature values and icon appear gray when this option is turned off.</li> </ul> |

# External robot control

An external robot can control the Advanced FPC Controller via digital signals. Doing so makes the following functions available:

- Run puts the controller into the Run state to start dispensing.
- Profile Select (1-3) the combined state of these 3 signals determines which recipe is selected via a user-supplied cable and foot pedal, a 24V signal, and a solid state relay (or dry contact).

The following state of the controller can be monitored via digital output signals:

- Ready the controller is capable of being put into the Run state.
- Busy the controller is currently dispensing.
- Fault the controller is in an error condition.

#### I/O polarity choices

To use an external robot, select from the following instructions that applies to the type of I/O polarity used by your robot.

**REQUIRED:** External robot must have 24V output

TIP:

PNP = sourcing; high side switching.

NPN = sinking; low side switching.

#### PNP start/stop only

To use an external robot to start/stop the controller:



- 1. Route ground from controller I/O 11 to robot ground.
- 2. Route 24V trigger signal from controller I/O 2 to robot signal.

### PNP start/stop with optional outputs

To use an external robot to start/stop the controller and to monitor available output signals:



- 1. Route ground from controller I/O 11 to robot ground.
- 2. Route 24V trigger signal from controller I/O 2 to robot signal.
- 3. Route 24V from controller I/O 12 to robot source.
- 4. To monitor controller reservoir signals, connect robot to controller output pins 6 (Ready), 7 (Busy), and 8 (Fault). Output voltage for pins 6, 7, 8 is equal to voltage on pin 12.

#### NPN start/stop only

To use an external robot to start/stop the controller:

**REQUIRED:** Customer-supplied Relay (solid state preferred) and Wiring



- 1. Route ground from controller I/O 11 to robot ground.
- 2. Jumper relay 3 to 1.
- 3. Route relay 2 to controller I/O 2.
- 4. Route robot ground/signal to relay 4.
- 5. Route robot 24V trigger signal to relay 3.

### NPN start/stop with optional outputs

To use an external robot to start/stop the controller and to monitor available output signals:

**REQUIRED:** Customer-supplied Relay (solid state preferred) and Wiring

**NOTE:** Additional relays may be necessary to convert for NPN input.



- 1. Route ground from controller I/O 11 to robot ground.
- 2. Jumper relay 3 to 1.
- 3. Route relay 2 to controller I/O 2.
- 4. Route robot ground/signal to relay 4.
- 5. Route robot 24V trigger signal to relay 3.
- 6. Route 24V from controller I/O 12 to robot source.

To monitor controller reservoir signals, connect robot to controller output pins 6 (Ready), 7 (Busy), and 8 (Fault). Output voltage for pins 6, 7, 8 is equal to voltage on pin 12.

# Communications

## Input/Output signals

Figure 8: IO is Opto-couple isolated.



| Pin | I/O Description                   | I/O Function         | I/O State              |
|-----|-----------------------------------|----------------------|------------------------|
| 1   | Digital Input                     | Reserved             |                        |
| 2   | Digital Input                     | Pump On (Start/Stop) |                        |
| 3   | Digital Input                     | Profile Select 1     |                        |
| 4   | Digital Input                     | Profile Select 2     | Active: High (+24V)    |
| 5   | Digital Input                     | Profile Select 3     | Inactive: Open circuit |
| 6   | Digital Output                    | Pump Ready           |                        |
| 7   | Digital Output                    | Pump Busy            |                        |
| 8   | Digital Output                    | Pump Fault           |                        |
| 9   | Reserved                          | Reserved             | 0-10 VDC               |
| 10  | Reserved                          | Reserved             | 0-10 VDC Return        |
| 11  | Ground                            | Ground/24V Com       | Ground/+5-28 VDC       |
|     |                                   |                      | Common                 |
| 12  | Voltage supply for output signals | Customer input       | +5-28 VDC              |

#### Table 2: External Input/Output Connector Pin Descriptions

## **Connector pin outs**

Figure 9: Jumpers

| 18 | Yellow | From | PS1-4<br>PS1-3 |
|----|--------|------|----------------|
| 2  | Block  | From | PS1-8          |
| 4  | Block  | From | PS1-7          |

**NOTE:** Jumpers are required on all header pins.

Figure 10: AMS (voltage feedback)



#### Figure 11: Ethernet



#### Figure 12: External I/O



#### Figure 13: RS232



#### Figure 14: Pumps



#### Figure 15: FPC & AUX



Figure 16: Foot Pedal



Figure 17: Heater(s)

| 18 | Yellow | From | PS1-4 |
|----|--------|------|-------|
| 2  | Yellow | From | PS1-3 |
| 4  | Block  | From | PS1-8 |
| 4  | Block  | From | PS1-7 |

### Ethernet TCP/IP

The Ethernet TCP/IP communication port provides an additional means beyond the touch screen for reading and writing controller parameters.

This method uses:

- Default IPv4 Address: 10.229.0.1
- Subnet Mask: 255.0.0.0
- Gateway: 10.0.0.1
- Log Destination IPv4 Address: 10.254.254.254

#### **Network configurations**

The user's PC can allow communication with the Advanced FPC Controller with either a switch (recommended) or by direct connection (alternative).

Sample TPC/IP configuration:

- IPv4 Address: 10.229.0.10
- Subnet Mask: 255.0.0.0
- Gateway: 10.0.0.1

Figure 18: Recommended: network configuration using a switch to communicate with controller



Figure 19: Alternative: network configuration using direct connection to communicate with controller



#### Log message output

The controller emits log messages in Syslog protocol format to the log destination address specified, i.e., Log Destination IPv4 Address noted here: <u>Ethernet TCP/IP</u> (pg 49).

Logging can be enabled by:

- Setting the LogEnable register in the process image
- Setting ASCII command: loge=1

Logging level can be set by:

- Setting the LogLevel register in the process image
- Setting ASCII command: logl={level}
  - Example of setting log level to Informational: log1=6

### **RS232** programming

The RS232 communication port provides an additional means beyond the touch screen for reading and writing controller parameters. This method of communication uses a text based (ASCII character set) command and response protocol.

#### RS232 settings

| Baud      | 115200 |
|-----------|--------|
| Data Bits | 8      |
| Stop Bits | 1      |
| Parity    | None   |

### ASCII commands

#### **Command Structure**

The actual ASCII string for the commands / responses are shown in the tables below. **NOTE:** - n refers to a single newline character (ASCII character 10).

#### Writing a variable value

var=val\n

ex. writing a variable value

| Command      | Response |  |
|--------------|----------|--|
| dfsp=100.0\n | v\n      |  |

#### Reading a variable value

var\n

ex. reading a variable value

| Command | Response  |  |
|---------|-----------|--|
| dfsp\n  | v 100.0\n |  |

#### Bad command / response

ex. bad command

| Command  | Response |
|----------|----------|
| badcmd\n | e 1\n    |

#### Responses

#### Success Responses

Always begins with a **v** character.

| v\n     | the command succeeded                                                               |
|---------|-------------------------------------------------------------------------------------|
| v xxx\n | the command succeeded and returned a value - value format is defined by the command |

## Error Response

| e x\n | the |
|-------|-----|
|       |     |

the command failed with error code x

#### **Error Codes**

| Error Code | Description                                    | Example     |
|------------|------------------------------------------------|-------------|
| 1          | Unknown command                                | badcmd\n    |
| 2          | Malformed command                              | dfsp=\n     |
| 3          | Value out of range                             | dfsp=-2.0\n |
| 4          | Write-only, value of variable cannot be read   | abcd\n      |
| 5          | Read-only, value of variable cannot be changed | pbsy=1\n    |

## ASCII command set

| KEY for Table 3 |         |                         |  |  |
|-----------------|---------|-------------------------|--|--|
| Column Code     |         | Description             |  |  |
| R/W             | R       | Read                    |  |  |
|                 | W       | Write                   |  |  |
| Controller      | F       | Advanced FPC Controller |  |  |
|                 | S       | Servo Controller        |  |  |
|                 | (blank) | Reserved                |  |  |

#### Table 3: ASCII Command Set

| Command | Description                                                 | R/W   | Notes                                                                 | Controller |
|---------|-------------------------------------------------------------|-------|-----------------------------------------------------------------------|------------|
|         | Ger                                                         | neral |                                                                       |            |
| prdy    | Pump ready                                                  | R     | 0=pump is not ready, 1=pump<br>ready                                  | F,S        |
| pbsy    | Pump busy                                                   | R     | 0=pump is not busy, 1=pump is<br>busy                                 | F,S        |
| pflt    | Pump fault                                                  | R     | 0=pump not in a fault state,<br>1=pump is in a fault state            | F,S        |
| pprs    | Pump present                                                | R     | 0=pump is not present/con-<br>nected,1=pump is present/con-<br>nected | S          |
| pion    | Pump on                                                     | R     | 0=pump signal not active,<br>1=pump signal activated                  | F,S        |
| prf1    | Profile Select 1 signal                                     | R     | 0=inactive,1=active                                                   | F,S        |
| prf2    | Profile Select 2 signal                                     | R     | 0=inactive,1=active                                                   | F,S        |
| prf3    | Profile Select 3 signal                                     | R     | 0=inactive,1=active                                                   | F,S        |
| unit    | Unit Select signal                                          | R     | 0=inactive,1=active                                                   |            |
| pdir    | Pump Direction signal                                       | R     | 0=inactive,1=active                                                   | S          |
| pval    | Pump valid and compatible with controller                   | R     | 0=pump invalid,1=pump valid                                           |            |
| pcnf    | The currently active pump configuration                     | R/W   |                                                                       | F,S        |
| dmod    | The dispense mode                                           | R/W   | 0=dot,1=continuous,65535=auto/<br>wire mode                           | F,S        |
| onst    | Online state of the controller (online or offline)          | R/W   | 1=Online, 0=Offline, transitions to<br>Online clear faults            | F,S        |
| frun    | Forces the pump to run with the current parameters          | R/W   | 1=Run, 0=Idle                                                         | F,S        |
| recp    | The currently selected recipe                               | R/W   | Zero based index, recp=0 is the<br>first recipe                       | F,S        |
| loge    | Log enable                                                  | R/W   | 0=disable,1=enabled                                                   | F,S        |
| logl    | The logging level                                           | R/W   |                                                                       | F,S        |
| wnvr    | Writes current configuration parameters to non volatile ram | R/W   | 0=no action, non-zero=performs<br>write                               | F,S        |

| Command | Description                                                             | R/W       | Notes                        | Controller |
|---------|-------------------------------------------------------------------------|-----------|------------------------------|------------|
|         | Servo Contro                                                            | ller Para | imeters                      |            |
| dfsp    | Dot Forward Speed (°/s)                                                 | R/W       | Positive non-zero number     | S          |
| dfac    | Dot Forward Acceleration (°/s <sup>2</sup> )                            | R/W       | Positive non-zero number     | S          |
| dfdc    | Dot Forward Deceleration (°/s <sup>2</sup> )                            | R/W       | Positive non-zero number     | S          |
| dfrt    | Dot Forward Rotation (°)                                                | R/W       | Positive non-zero number     | S          |
|         |                                                                         |           |                              |            |
| drsp    | Dot Reverse Speed (°/s)                                                 | R/W       | Positive non-zero number     | S          |
| drac    | Dot Reverse Acceleration (°/s <sup>2</sup> )                            | R/W       | Positive non-zero number     | S          |
| drdc    | Dot Reverse Deceleration (°/s <sup>2</sup> )                            | R/W       | Positive non-zero number     | S          |
| drrt    | Dot Reverse Rotation (°)                                                | R/W       | Positive number              | S          |
| drdl    | Dot Reverse Delay (ms)                                                  | R/W       | Non-negative number          | S          |
|         |                                                                         |           |                              |            |
| cfsp    | Continuous Forward Speed (°/s)                                          | R/W       | Positive non-zero number     | S          |
| cfac    | Continuous Forward Acceleration (°/s <sup>2</sup> )                     | R/W       | Positive non-zero number     | S          |
| cfdc    | Continuous Forward Deceleration (°/s <sup>2</sup> )                     | R/W       | Positive non-zero number     | S          |
|         |                                                                         |           |                              |            |
| crsp    | Continuous Reverse Speed (°/s)                                          | R/W       | Positive non-zero number     | S          |
| crac    | Continuous Reverse Acceleration (°/s <sup>2</sup> )                     | R/W       | Positive non-zero number     | S          |
| crdc    | Continuous Reverse Deceleration (°/s <sup>2</sup> )                     | R/W       | Positive non-zero number     | S          |
| crrt    | Continuous Reverse Rotation (°)                                         | R/W       | Positive number              | S          |
| crdl    | Continuous Reverse Delay (ms)                                           | R/W       | Non-negative number          | S          |
|         |                                                                         |           |                              |            |
| prvs    | Servo pump total revolutions                                            | R         | Valid only with EEPROM pumps |            |
|         | FPC / Time Pressure                                                     | Control   | ler Parameters               |            |
| cths    | The hold mode set point while in continu-                               | R/W       |                              | F          |
| ctrs    | The run mode set point for a continuous dispense                        | R/W       |                              | F          |
| ctss    | The standby mode set point while in con-<br>tinuous mode                | R/W       |                              | F          |
| ctst    | The standby mode timeout period (ms) while in continuous mode           | R/W       | Non-negative number          | F          |
|         |                                                                         |           |                              |            |
| dths    | The hold mode set point (kPa) while in dot mode                         | R/W       |                              | F          |
| dtrs    | The run mode set point (kPa) for a dot<br>dispense                      | R/W       |                              | F          |
| dtrt    | The amount of time (ms) that the dis-<br>pense will run for in dot mode | R/W       | Non-negative number          | F          |
| dtss    | The standby mode set point (kPa) while in dot mode                      | R/W       |                              | F          |
| dtst    | The standby mode timeout period (ms) while in dot mode                  | R/W       | Non-negative number          | F          |
|         |                                                                         |           |                              |            |
| faps    | The current fluid pressure (kPa)                                        | R         |                              | F          |
|         |                                                                         |           |                              |            |
| zfp     | Zeroes the fluid pressure sensor to the<br>current pressure             | R/W       | Write Non-zero               | F          |

| Command | Description                                         | R/W     | Notes                      | Controller |
|---------|-----------------------------------------------------|---------|----------------------------|------------|
| zrp     | Zeroes the reservoir pressure sensor to             | R/W     | Write Non-zero             | F          |
|         | the current pressure                                |         |                            |            |
|         | Body/Needle                                         | e Tempe | rature                     |            |
| btrd    | Body/Needle Temperature Ready                       | R       | 0=not ready, 1=ready       | F,S        |
| bten    | Body/Needle Temperature Enable                      | R/W     | 0=disable,non-zero=enabled | F,S        |
| btrx    | Body/Needle RTD Present                             | R       | 0=no rtd, 1=rtd detected   | F,S        |
| btmp    | Body/Needle Temperature (°C)                        | R       | Positive Number            | F,S        |
| btsp    | Body/Needle Temperature Setpoint<br>(°C)            | R/W     | Positive Number            | F,S        |
| btlo    | Body/Needle Temperature Minimum (°C)                | R/W     | Positive Number            | F,S        |
| bthi    | Body/Needle Temperature Maximum (°C)                | R/W     | Positive Number            | F,S        |
| btpp    | Body/Needle Temperature, PID Propor-<br>tional Gain | R/W     |                            | F,S        |
| btpi    | Body/Needle Temperature, PID Integral<br>Gain       | R/W     |                            | F,S        |
| btpd    | Body/Needle Temperature, PID Deriva-<br>tive Gain   | R/W     |                            | F,S        |
| btpe    | Body/Needle Temperature, PID Integral<br>Error Rate | R/W     |                            | F,S        |
| btpm    | Body/Needle Temperature, PID Integral<br>Maximum    | R/W     |                            | F,S        |
| btpt    | Body/Needle Temperature, PID Time base (ms)         | R/W     | non-zero                   | FS,        |
| btpw    | Body/Needle Temperature, PWM Period (ms)            | R/W     | non-zero                   | F,S        |
| btpr    | Body/Needle Temperature, sample rate (ms)           | R/W     | non-zero                   | F,S        |
| btfb    | Body/Needle Temperature, filter band                | R/W     |                            | F,S        |
| btfl    | Body/Needle Temperature, filter length              | R/W     |                            | F,S        |
|         | Res                                                 | ervoir  |                            |            |
| rlvd    | Reservoir Level Detect Enable                       | R/W     | 0=disable.non-zero=enabled | F.S        |
| rlvs    | Reservoir Level Detect Status                       | R       | 0=not active.1=active      | F,S        |
| rmix    | Reservoir Mixer Enable                              | R/W     | 0=disable,non-zero=enabled | F,S        |
|         | Reservoir <sup>-</sup>                              | Tempera | ature                      |            |
| rtrd    | Reservoir Temperature Ready                         | R       | 0=not ready, 1=ready       | F.S        |
| rten    | Reservoir Temperature Enable                        | R/W     | 0=disable,non-zero=enabled | F,S        |
| rtrx    | Reservoir RTD Present                               | R       | 0=no rtd, 1=rtd detected   | F,S        |
| rtmp    | Reservoir Temperature (°C)                          | R       | Positive Number            | F,S        |
| rtsp    | Reservoir Temperature Setpoint (°C)                 | R/W     | Positive Number            | F,S        |
| rtlo    | Reservoir Temperature Minimum (°C)                  | R/W     | Positive Number            | F,S        |
| rthi    | Reservoir Temperature Maximum (°C)                  | R/W     | Positive Number            | F,S        |
| rtpp    | Reservoir Temperature, PID Proportional Gain        | R/W     |                            | F,S        |
| rtpi    | Reservoir Temperature, PID Integral Gain            | R/W     |                            | F,S        |
| rtpd    | Reservoir Temperature, PID Derivative Gain          | R/W     |                            | F,S        |
| rtpe    | Reservoir Temperature, PID Integral Error<br>Rate   | R/W     |                            | F,S        |

## Table 3: ASCII Command Set (cont'd)

| Command | Description                                      | R/W      | Notes                | Controller |
|---------|--------------------------------------------------|----------|----------------------|------------|
| rtpm    | Reservoir Temperature, PID Integral Max-<br>imum | R/W      |                      | F,S        |
| rtpt    | Reservoir Temperature, PID Period (ms)           | R/W      | non-zero             | F,S        |
| rtpw    | Reservoir Temperature, PWM Period<br>(ms)        | R/W      | non-zero             | F,S        |
| rtpr    | Reservoir Temperature, sample rate (ms)          | R/W      | non-zero             | F,S        |
| rtfb    | Reservoir Temperature, filter band               | R/W      |                      | F,S        |
| rtfl    | Reservoir Temperature, filter length             | R/W      |                      | F,S        |
|         | Reservoi                                         | r Pressı | ure                  |            |
| rard    | Reservoir Air Ready                              | R        | 0=not ready, 1=ready | S          |
| raps    | Reservoir Air Pressure (kPa)                     | R        | Positive Number      | F,S        |
| rast    | Reservoir Air Set Point (kPa)                    | R/W      | Positive Number      | S          |
| rhip    | Reservoir Max Air Pressure (kPa)                 | R/W      | Positive Number      | S          |
| rlop    | Reservoir Min Air Pressure (kPa)                 | R/W      | Positive Number      | S          |
| dadl    | Disable Air Delay (ms)                           | R/W      | Non-negative number  | S          |

| Table 3: ASCII Command Set | (cont'd) |
|----------------------------|----------|
|----------------------------|----------|

### Modbus TCP/IP programming

This device implements the Modbus® TCP/IP protocol which provides an additional communication interface to the Advanced FPC Real Time Controller through the Ethernet connection.

The process image can be accessed via Modbus® TCP/IP using the following address scheme:

- 00000 to 09999 : Coil addressing
- 10000 to 19999 : Discrete input addressing
- 30000 to 39999 : Input register addressing
- 40000 to 49999 : Holding register addressing

#### Process image data

Use this process image data when communicating with the Advanced FPC Controller via its Ethernet connection. Refer to <u>Common process image</u> (pg 57).

#### Process image types

Content in the <u>Process image types</u> (pg 64) file provides reference information for data in the <u>Common process image</u> (pg 57) file. Also refer to <u>Process image</u> (pg 62).

# **Common Process Image**

# As of 12/18/2019

| Name             | Description                                                                  | Address | Туре            |
|------------------|------------------------------------------------------------------------------|---------|-----------------|
| PartNumber       | The GPD part number of the device                                            | 400000  | GPDPartNumber   |
| SerialNumber     | The unique serial number of the device                                       | 400010  | GPDSerialNumber |
| DeviceName       | A name describing the device                                                 | 400020  | ZString         |
| Manufacturer     | The manufacturer of the device                                               | 400030  | ZString         |
| Modelld          | The model identifier of the device                                           | 400040  | ZString         |
| FirmwareVersion  | Firmware version of the device                                               | 400050  | ZString         |
| DeviceFunction   | The overall function (or purpose) of the device                              | 400060  | ZString         |
| NetIPAddr        | The IP address of the device                                                 | 400070  | IPv4Address     |
| NetSubnet        | The subnet mask of the device                                                | 400080  | IPv4Address     |
| NetGateway       | The network gateway for the device                                           | 400090  | IPv4Address     |
| NetDNS           | The network DNS for the device                                               | 400100  | IPv4Address     |
| LogDest          | The network destination for log messages                                     | 400110  | IPv4Address     |
| BoardTemp        | The board temperature, from temperature sensor on device circuit board       | 400120  | Temperature     |
| ScriptSize       | The size of the PAWN script currently loaded on the device                   | 400122  | UInt16          |
|                  | The version of the script currently loaded, should be set in the application |         |                 |
| ScriptVersion    | script                                                                       | 400123  | ZString         |
|                  | Reads configuration data from non-volatile random access memory into         |         | C C             |
| ReadNVRAM        | memory                                                                       | 400133  | UInt16          |
|                  | The script identifier of the currently loaded script, this should be used to |         |                 |
| ScriptId         | uniquely identify a compiled script                                          | 400143  | ZString         |
|                  | The part number of the currently loaded application                          |         | 0               |
| ScriptPartNumber | script.                                                                      | 400170  | ZString         |
| LibVersion       | The library version of the firmware                                          | 400180  | ZString         |
|                  | A description of the last error condition as indicated                       |         | 0               |
| ErrorMsg         | in Error                                                                     | 400200  | ZString         |
| TRISA            | PORTA pin directions                                                         | 400293  | UInt16          |
| TRISB            | PORTB pin directions                                                         | 400294  | UInt16          |
| TRISC            | PORTC pin directions                                                         | 400295  | UInt16          |
| TRISD            | PORTD pin directions                                                         | 400296  | UInt16          |
| TRISE            | PORTE pin directions                                                         | 400297  | UInt16          |
| TRISF            | PORTF pin directions                                                         | 400298  | UInt16          |
| TRISG            | PORTG pin directions                                                         | 400299  | UInt16          |
| RAO              | The state of PORT RAO                                                        | 400300  | Boolean         |
| RA1              | The state of PORT RA1                                                        | 400301  | Boolean         |
| RA2              | The state of PORT RA2                                                        | 400302  | Boolean         |
| RA3              | The state of PORT RA3                                                        | 400303  | Boolean         |
| RA4              | The state of PORT RA4                                                        | 400304  | Boolean         |
| RA5              | The state of PORT RA5                                                        | 400305  | Boolean         |
| RA6              | The state of PORT RA6                                                        | 400306  | Boolean         |
| RA7              | The state of PORT RA7                                                        | 400307  | Boolean         |
| RA8              | The state of PORT RA8                                                        | 400308  | Boolean         |
| RA9              | The state of PORT RA9                                                        | 400309  | Boolean         |
| RA10             | The state of PORT RA10                                                       | 400310  | Boolean         |
| RA11             | The state of PORT RA11                                                       | 400311  | Boolean         |
|                  |                                                                              |         |                 |

| Name | Description            | Address | Туре    |
|------|------------------------|---------|---------|
| RA12 | The state of PORT RA12 | 400312  | Boolean |
| RA13 | The state of PORT RA13 | 400313  | Boolean |
| RA14 | The state of PORT RA14 | 400314  | Boolean |
| RA15 | The state of PORT RA15 | 400315  | Boolean |
| RBO  | The state of PORT RB0  | 400316  | Boolean |
| RB1  | The state of PORT RB1  | 400317  | Boolean |
| RB2  | The state of PORT RB2  | 400318  | Boolean |
| RB3  | The state of PORT RB3  | 400319  | Boolean |
| RB4  | The state of PORT RB4  | 400320  | Boolean |
| RB5  | The state of PORT RB5  | 400321  | Boolean |
| RB6  | The state of PORT RB6  | 400322  | Boolean |
| RB7  | The state of PORT RB7  | 400323  | Boolean |
| RB8  | The state of PORT RB8  | 400324  | Boolean |
| RB9  | The state of PORT RB9  | 400325  | Boolean |
| RB10 | The state of PORT RB10 | 400326  | Boolean |
| RB11 | The state of PORT RB11 | 400327  | Boolean |
| RB12 | The state of PORT RB12 | 400328  | Boolean |
| RB13 | The state of PORT RB13 | 400329  | Boolean |
| RB14 | The state of PORT RB14 | 400330  | Boolean |
| RB15 | The state of PORT RB15 | 400331  | Boolean |
| RCO  | The state of PORT RC0  | 400332  | Boolean |
| RC1  | The state of PORT RC1  | 400333  | Boolean |
| RC2  | The state of PORT RC2  | 400334  | Boolean |
| RC3  | The state of PORT RC3  | 400335  | Boolean |
| RC4  | The state of PORT RC4  | 400336  | Boolean |
| RC5  | The state of PORT RC5  | 400337  | Boolean |
| RC6  | The state of PORT RC6  | 400338  | Boolean |
| RC7  | The state of PORT RC7  | 400339  | Boolean |
| RC8  | The state of PORT RC8  | 400340  | Boolean |
| RC9  | The state of PORT RC9  | 400341  | Boolean |
| RC10 | The state of PORT RC10 | 400342  | Boolean |
| RC11 | The state of PORT RC11 | 400343  | Boolean |
| RC12 | The state of PORT RC12 | 400344  | Boolean |
| RC13 | The state of PORT RC13 | 400345  | Boolean |
| RC14 | The state of PORT RC14 | 400346  | Boolean |
| RC15 | The state of PORT RC15 | 400347  | Boolean |
| RD0  | The state of PORT RD0  | 400348  | Boolean |
| RD1  | The state of PORT RD1  | 400349  | Boolean |
| RD2  | The state of PORT RD2  | 400350  | Boolean |
| RD3  | The state of PORT RD3  | 400351  | Boolean |
| RD4  | The state of PORT RD4  | 400352  | Boolean |
| RD5  | The state of PORT RD5  | 400353  | Boolean |
| RD6  | The state of PORT RD6  | 400354  | Boolean |
| RD7  | The state of PORT RD7  | 400355  | Boolean |
| RD8  | The state of PORT RD8  | 400356  | Boolean |
| RD9  | The state of PORT RD9  | 400357  | Boolean |
| RD10 | The state of PORT RD10 | 400358  | Boolean |
| RD11 | The state of PORT RD11 | 400359  | Boolean |

| Name | Description            | Address | Туре    |
|------|------------------------|---------|---------|
| RD12 | The state of PORT RD12 | 400360  | Boolean |
| RD13 | The state of PORT RD13 | 400361  | Boolean |
| RD14 | The state of PORT RD14 | 400362  | Boolean |
| RD15 | The state of PORT RD15 | 400363  | Boolean |
| REO  | The state of PORT RE0  | 400364  | Boolean |
| RE1  | The state of PORT RE1  | 400365  | Boolean |
| RE2  | The state of PORT RE2  | 400366  | Boolean |
| RE3  | The state of PORT RE3  | 400367  | Boolean |
| RE4  | The state of PORT RE4  | 400368  | Boolean |
| RE5  | The state of PORT RE5  | 400369  | Boolean |
| RE6  | The state of PORT RE6  | 400370  | Boolean |
| RE7  | The state of PORT RE7  | 400371  | Boolean |
| RE8  | The state of PORT RE8  | 400372  | Boolean |
| RE9  | The state of PORT RE9  | 400373  | Boolean |
| RE10 | The state of PORT RE10 | 400374  | Boolean |
| RE11 | The state of PORT RE11 | 400375  | Boolean |
| RE12 | The state of PORT RE12 | 400376  | Boolean |
| RE13 | The state of PORT RE13 | 400377  | Boolean |
| RE14 | The state of PORT RE14 | 400378  | Boolean |
| RE15 | The state of PORT RE15 | 400379  | Boolean |
| RFO  | The state of PORT RF0  | 400380  | Boolean |
| RF1  | The state of PORT RF1  | 400381  | Boolean |
| RF2  | The state of PORT RF2  | 400382  | Boolean |
| RF3  | The state of PORT RF3  | 400383  | Boolean |
| RF4  | The state of PORT RF4  | 400384  | Boolean |
| RF5  | The state of PORT RF5  | 400385  | Boolean |
| RF6  | The state of PORT RF6  | 400386  | Boolean |
| RF7  | The state of PORT RF7  | 400387  | Boolean |
| RF8  | The state of PORT RF8  | 400388  | Boolean |
| RF9  | The state of PORT RF9  | 400389  | Boolean |
| RF10 | The state of PORT RF10 | 400390  | Boolean |
| RF11 | The state of PORT RF11 | 400391  | Boolean |
| RF12 | The state of PORT RF12 | 400392  | Boolean |
| RF13 | The state of PORT RF13 | 400393  | Boolean |
| RF14 | The state of PORT RF14 | 400394  | Boolean |
| RF15 | The state of PORT RF15 | 400395  | Boolean |
| RG0  | The state of PORT RG0  | 400396  | Boolean |
| RG1  | The state of PORT RG1  | 400397  | Boolean |
| RG2  | The state of PORT RG2  | 400398  | Boolean |
| RG3  | The state of PORT RG3  | 400399  | Boolean |
| RG4  | The state of PORT RG4  | 400400  | Boolean |
| RG5  | The state of PORT RG5  | 400401  | Boolean |
| RG6  | The state of PORT RG6  | 400402  | Boolean |
| RG7  | The state of PORT RG7  | 400403  | Boolean |
| RG8  | The state of PORT RG8  | 400404  | Boolean |
| RG9  | The state of PORT RG9  | 400405  | Boolean |
| RG10 | The state of PORT RG10 | 400406  | Boolean |
| RG11 | The state of PORT RG11 | 400407  | Boolean |

| Name            | Description                                                              | Address | Туре     |  |  |  |
|-----------------|--------------------------------------------------------------------------|---------|----------|--|--|--|
| RG12            | The state of PORT RG12                                                   | 400408  | Boolean  |  |  |  |
| RG13            | The state of PORT RG13                                                   | 400409  | Boolean  |  |  |  |
| RG14            | The state of PORT RG14400410Bo                                           |         |          |  |  |  |
| RG15            | The state of PORT RG15                                                   | 400411  | Boolean  |  |  |  |
| AnalogInCh0     | The normalized value of the analog input channel 0                       | Float   |          |  |  |  |
| AnalogInCh1     | The normalized value of the analog input channel 1                       | 400414  | Float    |  |  |  |
| AnalogInCh2     | The normalized value of the analog input channel 2                       | 400416  | Float    |  |  |  |
| AnalogInCh3     | The normalized value of the analog input channel 3                       | 400418  | Float    |  |  |  |
| AnalogInCh4     | The normalized value of the analog input channel 4                       | 400420  | Float    |  |  |  |
| AnalogInCh5     | The normalized value of the analog input channel 5                       | 400422  | Float    |  |  |  |
| AnalogInCh6     | The normalized value of the analog input channel 6                       | 400424  | Float    |  |  |  |
| AnalogInCh7     | The normalized value of the analog input channel 7                       | 400426  | Float    |  |  |  |
| AnalogOutCh0    | The normalized value of the analog output channel 0                      | 400428  | Float    |  |  |  |
| AnalogOutCh1    | The normalized value of the analog output channel 1                      | 400430  | Float    |  |  |  |
| AnalogOutCh2    | The normalized value of the analog output channel 2                      | 400432  | Float    |  |  |  |
| AnalogOutCh3    | The normalized value of the analog output channel 3                      | 400434  | Float    |  |  |  |
| AnalogOutCh4    | The normalized value of the analog output channel 4                      | 400436  | Float    |  |  |  |
| AnalogOutCh5    | The normalized value of the analog output channel 5                      | 400438  | Float    |  |  |  |
| AnalogOutCh6    | The normalized value of the analog output channel 6                      | 400440  | Float    |  |  |  |
| AnalogOutCh7    | The normalized value of the analog output channel 7                      | 400442  | Float    |  |  |  |
| AnalogInCh8     | The normalized value of the analog input channel 8                       | 400444  | Float    |  |  |  |
| AnalogInCh9     | The normalized value of the analog input channel 9                       | 400446  | Float    |  |  |  |
| AnalogInCh10    | The normalized value of the analog input channel 10                      | 400448  | Float    |  |  |  |
| AnalogInCh11    | The normalized value of the analog input channel 11                      | 400450  | Float    |  |  |  |
| AnalogInCh12    | The normalized value of the analog input channel 12                      | 400452  | Float    |  |  |  |
| AnalogInCh13    | The normalized value of the analog input channel 13                      | 400454  | Float    |  |  |  |
| AnalogInCh14    | The normalized value of the analog input channel 14                      | 400456  | Float    |  |  |  |
| AnalogInCh15    | The normalized value of the analog input channel 15                      | 400458  | Float    |  |  |  |
| LogEnable       | Enables or disables log messages, 0 = disabled, non-zero = enabled       | 400500  | Boolean  |  |  |  |
| LogLevel        | The log level threshold for log messages                                 | 400501  | LogLevel |  |  |  |
| Reset           | Resets/Restarts the device when value 0xA55A is written                  | 400502  | UInt16   |  |  |  |
|                 | Restarts the device in bootloader mode when value 0xA55A is written,     |         |          |  |  |  |
| BootloaderStart | enabling the device to have it's firmware updated                        | 400503  | UInt16   |  |  |  |
|                 | Writes data to non-volatile memory where: 0xA55A=saves all,              |         |          |  |  |  |
|                 | alternatively as a bitmask: 0x1=saves all, 0x2=saves configuration,      |         |          |  |  |  |
|                 | 0x4=saves all recipes, 0x8=saves current recipe, 0x10=saves provisioning |         |          |  |  |  |
| WriteNVRAM      | data                                                                     | 400504  | UInt16   |  |  |  |
| Safe            | Forces the system/hardware to go to a safe state                         | 400505  | Boolean  |  |  |  |
| Error           | The error code of the system/device (0 = no error)                       | 400506  | Int16    |  |  |  |
| AInSlopeCh0     | The slope in the linear equation for analog input channel 0              | 400507  | Float    |  |  |  |
| AInOffsetCh0    | The offset in the linear equation fo analog input channel 0              | 400509  | Float    |  |  |  |
| AInSlopeCh1     | The slope in the linear equation for analog input channel 1              | 400511  | Float    |  |  |  |
| AInOffsetCh1    | The offset in the linear equation fo analog input channel 1              | 400513  | Float    |  |  |  |
| AInSlopeCh2     | The slope in the linear equation for analog input channel 2              | 400515  | Float    |  |  |  |
| AInOffsetCh2    | The offset in the linear equation fo analog input channel 2              | 400517  | Float    |  |  |  |
| AInSlopeCh3     | The slope in the linear equation for analog input channel 3              | 400519  | Float    |  |  |  |
| AInOffsetCh3    | The offset in the linear equation fo analog input channel 3              | 400521  | Float    |  |  |  |

| Name          | Description                                                  | Address |       | Туре |
|---------------|--------------------------------------------------------------|---------|-------|------|
| AInSlopeCh4   | The slope in the linear equation for analog input channel 4  | 400523  | Float |      |
| AInOffsetCh4  | The offset in the linear equation fo analog input channel 4  | 400525  | Float |      |
| AInSlopeCh5   | The slope in the linear equation for analog input channel 5  | 400527  | Float |      |
| AInOffsetCh5  | The offset in the linear equation fo analog input channel 5  | 400529  | Float |      |
| AInSlopeCh6   | The slope in the linear equation for analog input channel 6  | 400531  | Float |      |
| AInOffsetCh6  | The offset in the linear equation fo analog input channel 6  | 400533  | Float |      |
| AInSlopeCh7   | The slope in the linear equation for analog input channel 7  | 400535  | Float |      |
| AInOffsetCh7  | The offset in the linear equation fo analog input channel 7  | 400537  | Float |      |
|               |                                                              |         |       |      |
| AOutSlopeCh0  | The slope in the linear equation for analog output channel 0 | 400539  | Float |      |
| AOutOffsetCh0 | The offset in the linear equation fo analog output channel 0 | 400541  | Float |      |
| AOutSlopeCh1  | The slope in the linear equation for analog output channel 1 | 400543  | Float |      |
| AOutOffsetCh1 | The offset in the linear equation fo analog output channel 1 | 400545  | Float |      |
| AOutSlopeCh2  | The slope in the linear equation for analog output channel 2 | 400547  | Float |      |
| AOutOffsetCh2 | The offset in the linear equation fo analog output channel 2 | 400549  | Float |      |
| AOutSlopeCh3  | The slope in the linear equation for analog output channel 3 | 400551  | Float |      |
| AOutOffsetCh3 | The offset in the linear equation fo analog output channel 3 | 400553  | Float |      |
| AOutSlopeCh4  | The slope in the linear equation for analog output channel 4 | 400555  | Float |      |
| AOutOffsetCh4 | The offset in the linear equation fo analog output channel 4 | 400557  | Float |      |
| AOutSlopeCh5  | The slope in the linear equation for analog output channel 5 | 400559  | Float |      |
| AOutOffsetCh5 | The offset in the linear equation fo analog output channel 5 | 400561  | Float |      |
| AOutSlopeCh6  | The slope in the linear equation for analog output channel 6 | 400563  | Float |      |
| AOutOffsetCh6 | The offset in the linear equation fo analog output channel 6 | 400565  | Float |      |
| AOutSlopeCh7  | The slope in the linear equation for analog output channel 7 | 400567  | Float |      |
| AOutOffsetCh7 | The offset in the linear equation fo analog output channel 7 | 400569  | Float |      |
|               |                                                              |         |       |      |

|                        | As of 12/18/2019                                                                                                 |         |             |
|------------------------|------------------------------------------------------------------------------------------------------------------|---------|-------------|
| Name                   | Description                                                                                                      | Address | Туре        |
| PumpConfig             | The currently active pump configuration                                                                          | 400800  | ZString     |
| PresCtrlEnable         | Enables the pressure controller                                                                                  | 400832  | Boolean     |
| PresCtrlUpdateRate     | The undate rate of the pressure controller (ms)                                                                  | 400833  | Ulnt16      |
| PresCtrlSetnoint       | The current set point for the pressure controller                                                                | 400834  | Float       |
| PresCtrlPronGain       | The proportional gain for the pressure controller                                                                | 400836  | Float       |
| PresCtrlDerivGain      | The derivative gain for the pressure controller                                                                  | 400838  | Float       |
| ProsCtrlExDutyCyclo    | The value duty cycle for the dump value when exhausting                                                          | 400838  | Float       |
| Prescultzbutycycle     | The pully available for the value and the ment exhausting                                                        | 400840  | Hight C     |
| Prescuriewiniperiod    | The privile defined for the valve controller                                                                     | 400842  | UIIILI6     |
| PresctriDumpDutyCycle  | The value duty cycle for the dump value when holding pressure                                                    | 400843  | Float       |
| Procutrienable         | Enables the process controller                                                                                   | 400900  | Boolean     |
| ProcCtrIUpdateRate     | The update rate of the process controller (ms)                                                                   | 400901  | UInt16      |
| ProcCtrISetpoint       | The current set point for the process controller                                                                 | 400902  | Float       |
| ProcCtrlPropGain       | The proportional gain for the process controller                                                                 | 400904  | Float       |
| ProcCtrlIntGain        | The integral gain for the process controller                                                                     | 400906  | Float       |
| ProcCtrlDerivGain      | The derivative gain for the process controller                                                                   | 400908  | Float       |
| ProcCtrlIntMax         | The maximum amount of integral for the process controller                                                        | 400910  | Float       |
| ProcCtrlIntRate        | The maximum amount of integral added per update of the process controller                                        | 400912  | Float       |
| ProcErrorSensor        | Sets the current pressure control point (0=fluid,1=reservoir)                                                    | 400947  | UInt16      |
| ProcError              | The current amount of process error                                                                              | 400948  | Float       |
| ProcErrorDetected      | Determines if a process error has been detected                                                                  | 400950  | UInt16      |
| ProcErrorWindow        | The maximum allowable process error                                                                              | 400951  | Float       |
| ProcErrorTimeWindow    | The maximum allowable time to exceed the maximum allowable process error                                         | 400953  | UInt16      |
| ProcExhaustThreshold   | The amount of pressure differential that will cause the system to perform maximum exhaust                        | 400954  | Float       |
| FluidSensorPresent     | Determines if a fluid sensor is present                                                                          | 400989  | UInt16      |
| ZeroBsryrPressure      | Zeroes the reservoir pressure sensor to the current pressure                                                     | 400990  | Ulnt16      |
| ZeroEluidPressure      | Zeroes the fluid pressure sensor to the current pressure                                                         | 400991  | Ulpt16      |
| ScreenshotEnable       | Creates a screenshot of the HMI sayed to SD card                                                                 | 400970  | Ullot16     |
| ScreenshotEile         | The files a science of the river the screensbed willing saved                                                    | 400970  | ZString     |
| NeedloTomplataMay      | The maximum interacts value for the DD controller for the possible temperature controller                        | 400980  | Elect       |
| NeedleTempintgiviax    | The maximum integral value for the PID controller for the needed temperature controller                          | 400992  | Float       |
| NeedleTempintgkate     | The maximum amount of integral per update for the PID controller for the needle temperature controller           | 400994  | Float       |
| RSTVFTempIntgiviax     | The maximum integral value for the PID controller for the reservoir temperature controller                       | 400996  | Float       |
| RsrvrTempIntgRate      | The maximum amount of integral per update for the PID controller for the reservoir temperature controller        | 400998  | Float       |
| RsrvrTempRTDPresent    | Indicates if an RTD is currently connected to the controller for the reservoir                                   | 401004  | Boolean     |
| NeedleTempRTDPresent   | Indicates if an RTD is currently connected to the controller for the needle heater                               | 401005  | Boolean     |
| RsrvrTemp              | The current temperature of the reservoir the RTD value                                                           | 401006  | Temperature |
| NeedleTemp             | The current temperature of the needle temperature                                                                | 401008  | Temperature |
| NeedleTempReady        | The needle temperature is within specifications                                                                  | 401010  | Boolean     |
| ForceRun               | Forces the pump to run with the current parameters                                                               | 401011  | Boolean     |
| PumpOn                 | Signals the controller to begin running the pump                                                                 | 401012  | Boolean     |
| PumpProfileSelect1     | Pump control profile select #1, the profile is selected by the three profile select inputs (8 possible profiles) | 401014  | Boolean     |
| PumpProfileSelect2     | Pump control profile select #2, the profile is selected by the three profile select inputs (8 possible profiles) | 401015  | Boolean     |
| PumpProfileSelect3     | Pump control profile select #3, the profile is selected by the three profile select inputs (8 possible profiles) | 401016  | Boolean     |
| LvIDtct                | The status of the level detect sensor                                                                            | 401019  | Boolean     |
| RsrvrTempReady         | The reservoir temperature is within specifications                                                               | 401020  | Boolean     |
| OnlineState            | Online state of the controller (online or offline)                                                               | 401021  | Boolean     |
| RsrvrAirPressure       | The current air pressure of the reservoir                                                                        | 401025  | Pressure    |
| PumpReady              | Indicates if the pump is ready to be driven                                                                      | 401027  | Boolean     |
| PumpBusy               | Indicates if the pump is busy performing an operation                                                            | 401028  | Boolean     |
| PumpFault              | Indicates if the nump is in a fault state                                                                        | 401029  | Boolean     |
| RsrvrHeaterOn          | Controls the reservoir bester                                                                                    | 401030  | Boolean     |
| NeedleHesterOn         | Controls the needle bester                                                                                       | /01031  | Boolean     |
| BsryrTempProp          | Reservoir Temperature Proportional Gain                                                                          | 401033  | Float       |
| BsnyrTempIntg          | Reservoir Temperature Internal Gain                                                                              | 401035  | Float       |
| BenyrTompDoriy         |                                                                                                                  | 401035  | Float       |
| RenurTempDeriv         | Reservoir Teiniperature, Derivative Gain                                                                         | 401037  | Float       |
| RSIVITEIIIPPIDPEIlou   | Reservoir feiniperature, Pild Period (IIS)                                                                       | 401039  |             |
| RstvirtempPwiviPeriod  | Reservoir Temperature, PWM Period (ms)                                                                           | 401040  | Unit 6      |
| RSTVFTempSampleRate    | Reservoir Temperature, sample rate (ms)                                                                          | 401041  |             |
| NeedleTempProp         | Needle Temperature, Proportional Gain                                                                            | 401042  | Float       |
| NeedleTempIntg         | Needle Temperature, Integral Gain                                                                                | 401044  | Float       |
| NeedleTempDeriv        | Needle Temperature, Derivative Gain                                                                              | 401046  | Float       |
| NeedleTempPIDPeriod    | Needle Temperature, PID Period (ms)                                                                              | 401048  | UInt16      |
| NeedleTempPWMPeriod    | Needle Temperature, PWM Period (ms)                                                                              | 401049  | UInt16      |
| NeedleTempSampleRate   | Needle Temperature, sample rate (ms)                                                                             | 401050  | UInt16      |
| RsrvrTempDutyCycle     | Reservoir Temperature, current heater output duty cycle                                                          | 401051  | Float       |
| NeedleTempDutyCycle    | Needle Temperature, current heater output duty cycle                                                             | 401053  | Float       |
| RsrvrTempPowerGain     | Reservoir Temperature, gain for the PID control output                                                           | 401055  | Float       |
| NeedleTempPowerGain    | Needle Temperature, gain for the PID control output                                                              | 401057  | Float       |
| SelectedRecipe         | The currently selected recipe                                                                                    | 401069  | UInt16      |
| NeedleTempOffset       | Offset applied to the needle temperature value                                                                   | 401074  | Float       |
| RsrvrTempOffset        | Offset applied to the reservoir temperature value                                                                | 401078  | Float       |
| NeedleTempFilterBand   | The band width of the software filter for the needle temperature                                                 | 401080  | Float       |
| NeedleTempFilterLength | The sample length of the software filter for the needle temperature                                              | 401082  | UInt16      |
| RsrvrTempFilterBand    | The band width of the software filter for the reservoir temperature                                              | 401083  | Float       |
| RsrvrTempFilterLength  | The sample length of the software filter for the reservoir temperature                                           | 401085  | UInt16      |

Process Image

| Name                | Description                                                                        | Address | Туре        |
|---------------------|------------------------------------------------------------------------------------|---------|-------------|
| PrevDispenseType    | The dispense mode used in the previous dispense cycle                              | 401086  | UInt16      |
| RsrvrAirOffset      | Offset applied to the reservoir air pressure value                                 | 401087  | Float       |
| FluidPressure       | The current fluid pressure                                                         | 401092  | Pressure    |
| DotRunDuration      | The amount of time (ms) that the dispense will run for in dot mode                 | 401100  | UInt16      |
| DotRunSetpoint      | The run mode setpoint for a dot dispense                                           | 401101  | Pressure    |
| DotStandbySetpoint  | The standby mode setpoint while in dot mode                                        | 401103  | Pressure    |
| DotHoldSetpoint     | The hold mode setpoint while in dot mode                                           | 401105  | Pressure    |
| DotStandbyTimeout   | The standby mode timeout period (ms) while in dot mode                             | 401117  | UInt16      |
| ContRunSetpoint     | The run mode setpoint for a continuous dispense                                    | 401118  | Pressure    |
| ContStandbySetpoint | The standby mode setpoint while in continuous mode                                 | 401120  | Pressure    |
| ContHoldSetpoint    | The hold mode setpoint while in continuous mode                                    | 401122  | Pressure    |
| ContStandbyTimeout  | The standby mode timeout period (ms) while in continuous mode                      | 401132  | UInt16      |
| NeedleTempEnable    | Enables the needle temperature control                                             | 401134  | Boolean     |
| NeedleTempSetpoint  | The current setpoint for the needle temperature                                    | 401135  | Temperature |
| RsrvrTempEnable     | Enables the reservoir temperature control                                          | 401137  | Boolean     |
| RsrvrTempSetpoint   | The current setpoint for the reservoir temperature                                 | 401138  | Temperature |
| RsrvrAirMaxPressure | The maximum allowable air pressure for the reservoir                               | 401140  | Pressure    |
| RsrvrAirMinPressure | The minimum allowable air pressure for the reservoir                               | 401142  | Pressure    |
| RsrvrLvIDtctEnable  | Enables the level detection for the reservoir                                      | 401144  | Boolean     |
| RsrvrMixerEnable    | Enables the reservoir mixer                                                        | 401145  | Boolean     |
| DispenseMode        | Indicates the dispense mode type to use                                            | 401146  | UInt16      |
| RsrvrTempMin        | The minimum temperature value of the reservoir to be considered within 'tolerance' | 401147  | Temperature |
| RsrvrTempMax        | The maximum temperature value of the reservoir to be considered within 'tolerance' | 401149  | Temperature |
| NeedleTempMin       | The minimum temperature value of the needle to be considered within 'tolerance'    | 401151  | Temperature |
| NeedleTempMax       | The maximum temperature value of the needle to be considered within 'tolerance'    | 401153  | Temperature |
| TuningProfile       | The tuning profile number used with the currently selected recipe                  | 401163  | UInt16      |

# Process Image Types As of 04/06/2016

| РІ Туре                      | OPC Type         | Unit                   | Range                                         | Description                                                         | Notes                              |
|------------------------------|------------------|------------------------|-----------------------------------------------|---------------------------------------------------------------------|------------------------------------|
| UInt16                       | Word             |                        | 0 ≤ N ≤ 65535                                 | 16 bit unsigned integer                                             |                                    |
| Int16                        | Short            |                        | -32768 ≤ N ≤ 32767                            | 16 bit signed integer                                               |                                    |
| UInt32                       | DWord            |                        | 0 ≤ N ≤ 4294967295                            | 32 bit unsigned integer                                             |                                    |
| Int32                        | Long             |                        | -2147483648 ≤ N ≤ 2147483647                  | 32 bit signed integer                                               |                                    |
| Float                        | DWord            |                        | 2E-38≤ N ≤ 2E38                               | single precision floating point                                     |                                    |
| Count                        | DWord            |                        | 0 ≤ N ≤ 4294967295                            | 32 bit signed number                                                |                                    |
| Name(N)                      | String.N         |                        | [A-Za-z\b]                                    | A string of characters of max length N, null terminated ASCII       |                                    |
|                              |                  |                        |                                               | string                                                              |                                    |
| Boolean                      | Short            |                        | true false                                    |                                                                     |                                    |
| ZString(N)                   | String.N         | byte                   | ^ .{0,N}\$                                    |                                                                     | Note that the zero terminator      |
|                              |                  |                        |                                               |                                                                     | may not be present at              |
|                              |                  |                        |                                               |                                                                     | MODBUS/OPC protocol levels.        |
|                              |                  |                        |                                               |                                                                     |                                    |
| GPD Part Number              | String.10        |                        | ^[0-9]{4}-[0-9]{4}(-[0-9]+)?\$                |                                                                     |                                    |
| GPD Serial Number            | String.10        |                        | ^[0-9]{7,9}\$                                 | NNN = product code, nnnn = sequential machine id e.g.               |                                    |
|                              |                  |                        |                                               | 2220281 222=uMAX 0281=machine #281                                  |                                    |
| IPv4 Address                 | String.16        |                        | ^(?:[0-9]{1,3}\.){3}[0-9]{1,3}\$ <sup>1</sup> | standard octet dotted notation                                      | e.g. 192.18.0.1                    |
| Distance                     | Float            | mm                     | ±10E38                                        |                                                                     |                                    |
| Duration                     | DWord            | ms                     | 0 ≤ N ≤ 4294967295]                           | a span of time (ms)                                                 |                                    |
| Angle                        | Float            | 0                      | ±360°                                         |                                                                     |                                    |
| Speed                        | float            | mm/s                   | ±10E38                                        |                                                                     |                                    |
| Acceleration                 | Float            | mm/s²                  | ±10E38                                        |                                                                     |                                    |
| RotationalSpeed              | Float            | ° n/s                  | ±10E38                                        |                                                                     |                                    |
| RotationalAcceleration       | Float            | ° n/s²                 | ±10E38                                        |                                                                     |                                    |
| Temperature                  | Float            | °C                     | ±10E38                                        |                                                                     |                                    |
| Pressure                     | Float            | kPa                    | ±10E38                                        |                                                                     |                                    |
| LogLevel                     | Word             |                        | 0-8                                           | Log message levels                                                  | 0=emergency, 1=alert, 2=critical,  |
|                              |                  |                        |                                               |                                                                     | 3=error, 4=warning, 5=notice,      |
|                              |                  |                        |                                               |                                                                     | 6=info, 7=debug, 8=trace           |
|                              |                  |                        |                                               |                                                                     |                                    |
| CultureInfo                  | String.6         | https://msdn.micros    | ^[a-z]{2}-[A-Z]{2}\$                          | Cultural information for localization, the two character            | example. 'en-US'                   |
|                              |                  | oft.com/en-            |                                               | language code followed by the two character country code            |                                    |
|                              |                  | us/library/ee825488(   |                                               |                                                                     |                                    |
|                              |                  | v=cs.20).aspx          |                                               |                                                                     |                                    |
| 1 the given regex is a simpl | istic match - it | does not enforce range | es on the octets. A more accurate ver         | rsion is this: ^(?:(?:25[0-5] 2[0-4][0-9] [01]?[0-9][0-9]?)\.){3}(? | :25[0-5] 2[0-4][0-9] [01]?[0-9][0- |
| 9]?)\$                       |                  |                        |                                               |                                                                     |                                    |